Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Efektywność wspomagania biodegradacji w gruncie zanieczyszczonym węglowodorami ropopochodnymi
Języki publikacji
Abstrakty
Studies were conducted using a 10-chamber Micro-Oxymax (Columbus, OH, USA) respirometer to determine the effect of bioaugmentation, biostimulation and combination of them on enhancing intrinsic biodegradation of oil hydrocarbons in soil. Contaminated soil was collected from a former military airport in Kluczewo, Poland. Bioaugmentation was realized by addition of indigenous or exogenous bacteria to soil. Biostimulation was done by aerated water supply and surfactant addition. Bioaugmentation + addition of a surfactant was applied as the combined treatment. The intrinsic and enhanced hydrocarbons biodegradation rates were estimated from the slopes of linear regressions of cumulative curves of O2 uptake. Pertinent biodegradation rates were recalculated on the basis of the stoichiometric reaction (mass balance equation) and conversion equation. The results showed that combined treatment (indigenous bacteria bioaugmentation + addition of a surfactant) was the most effective method of biodegradation enhancement as the 20-fold increase of biodegradation rate was observed.
Przeprowadzono badania mające na celu określenie efektywności wspomagania biodegradacji węglowodorów ropopochodnych w gruncie w wyniku zastosowania bioaugmentacji, biostymulacji lub metody kombinowanej. Próbki gruntu użyte do badań zostały pobrane z terenu Centralnej Stacji Tankowania (CST) lotniska Kluczewo niedaleko Stargardu Szczecińskiego. Bioaugmentację przeprowadzono z użyciem autochtonicznych i allochtonicznych mikroorganizmów zdolnych do rozkładu węglowodorów ropopochodnych. Z kolei biostymulacja obejmowała wprowadzenie napowietrzonej wody lub substancji powierzchniowo czynnej (SPC) do zanieczyszczonego gruntu. Biodegradację węglowodorów ropopochodnych szacowano na podstawie konsumpcji O2 przy użyciu respirometru Micro-Oxymax V6.0 COLUMBUS INSTRUMENTS. Średnie szybkości konsumpcji O2 podczas biodegradacji węglowodorów wyznaczono z równań aproksymacji liniowej krzywych kumulacyjnych. Na podstawie równania bilansu masy i wyznaczonych szybkości konsumpcji O2 obliczono szybkość biodegradacji węglowodorów, tj. szybkość ubytku substratu w czasie. Z przeprowadzonych badań wynika, że metoda kombinowana (kombinacja bioaugmentacji z dodatkiem SPC) była najbardziej efektywną metodą wspomagania biodegradacji węglowodorów ropopochodnych w gruncie - odnotowano wtedy 20-krotny wzrost szybkości biodegradacji.
Czasopismo
Rocznik
Tom
Strony
101--113
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University of Czestochowa,Armii Krajowej 13/15, 42-200 Czestochowa, Poland
autor
- Department of Hydrogeology and Engineering Geology, AGH University of Science and Technology,Mickiewicza 30, 30-059 Cracow
autor
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University of Czestochowa,Armii Krajowej 13/15, 42-200 Czestochowa, Poland
autor
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University of Czestochowa,Armii Krajowej 13/15, 42-200 Czestochowa, Poland
Bibliografia
- [1] Atlas, R.M. & Bartha, R. (1998). Microbial Ecology: Fundamentals and Applications. Benjamin/Cummings Publishing, Menlo Park, CA 1998.
- [2] Bento, F.M., Camargo, F.A.O., Okeke, B.C. & Frankenberger, W.T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation, Bioresource Technology, 96, 1049-1055. [PubMed]
- [3] Capelli, S.M., Busalmen, J.P. & Sanchez, S.R. (2001). Hydrocarbon bioremediation of a mineral-base contaminated waste from crude oil extraction by indigenous bacteria, International Biodeterioration and Biodegradation, 47, 233-238.
- [4] Coulon, F. & Delille, D. (2003). Effects of Biostimulation on Growth of Indigenous Bacteria in Sub- -Antarctic Soil Contaminated with Oil Hydrocarbons, Oil and Gas Science and Technology, 58, 469-479.
- [5] D’Annibale, A., Rosetto, F., Leonardi, V., Federici, F. & Petruccioli, M. (2006). Role of autochthonous fi lamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons, Applied and Environmental Microbiology, 72, 28-36.
- [6] Devinny, J. & Chang, S.H. (2000). Bioaugmentation for soil bioremediation. In Wise, D.L., Trantolo, D. (Eds.), Bioremediation of Contaminated Soils, 465-488, Marcel Dekker, New York 2000.
- [7] Fantroussi, S.E. & Agathos, S.N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 8, 268-275.
- [8] Gentry, T.J., Rensing, C. & Pepper, I.L. (2004). New approaches for bioaugmentation as a remediation technology, Critical Reviews in Environmental Science and Technology, 34, 447-494.
- [9] Gouda, M.K., Omar, S.H., Nour Eldin, H.M. & Checkroud, Z.A. (2008). Bioremediation of kerosene II: a case study in contaminated clay (Laboratory and fi eld: scale microcosms), World Journal of Microbiology and Biotechnology, 24, 1451-1460.
- [10] Hamman, S. (2004). Bioremediation capabilities of white rot fungi, Biodegradatio n, 52, 1-6.
- [11] Hosokawa, R., Nagai, M., Morikawa, M. & Okuyama, H. (2009). Autochthonous bioaugmentation and its possible application to oil spills, World Journal of Microbiology and Biotechnology, 25, 1519-1528.
- [12] Khan, F.I., Husain, T. & Hejazi, R. (2004). An overview and analysis of site remediation technologies, Journal of Environmental Management, 71, 95-122.
- [13] Lai, C.C., Huang, Y.C., Wei, Y.H. & Chang, J.S. (2009). Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil, Journal of Hazardous Materials, 167, 609-614.
- [14] Lee, M., Kim, M.K., Kwon, M., Park, B.D., Kim, M.H., Goodfellow, M. & Lee, S. (2005). Effect of the Synthesized Mycolic Acid on the Biodegradation of Diesel Oil by Gordonia nitida Strain LE31, Journal of Bioscience and Bioengineering, 100, 429-436.
- [15] Liang, Y., Zhang, X., Dai, D. & Li, G. (2009). Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation., 63, 80-87.
- [16] Malina, G. (1999). The bioventing of unsaturated zone contaminated with oil compounds. Monograph 66, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 1999.
- [17] Malina, G. (2007). Risk reduction of soil and groundwater at contaminated areas. Monograph 132, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2007.
- [18] Malina, G. & Zawierucha, I. (2007). Potential of Bioaugmentation and Biostimulation for Enhancing Intrinsic Biodegradation in Oil Hydrocarbon-Contaminated Soil, Bioremediation Journal, 11, 141-147.
- [19] Mariano, A.P., Kataoka, A.P., Angelis, D. & Bonotto, D.M. (2007). Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station, Brazilian Journal of Microbiology, 38, 346-353.
- [20] Menendez-Vega, D., Gallego, J.L.R., Pelaez, A.I., de Cordoba, G.F., Moreno, J., Munoz, D. & Sanchez, J. (2007). Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons, European Journal of Soil Biology, 43, 310-321.
- [21] Płaza, G., Ulfi g, K., Worsztynowicz, A., Malina, G., Krzemińska, B. & Brigmon, L. (2005). Respirometry for assessing the biodegradation of petroleum hydrocarbons, Environmental Technology, 26, 161-169.
- [22] Rahman, K.S.M., Rahman, T.J., Kourkoutas, Y., Petsas, I., Marchant, R. & Banat, I.M. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients, Bioresource Technology, 90, 159-168.
- [23] Rous, J.D., Sabatini, D.A., Sufl ita, J.M. & Harwell, J.H. (1994). Influence of surfactants on microbial degradation of organic compounds, Critical Reviews in Environmental Science and Technology, 24, 325-370.
- [24] Sarkar, D., Ferguson, M., Datta, R. & Birnbaum, S. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation and monitored natural attenuation, Environmental Pollution, 136, 187-195.
- [25] Sayler, G.S. & Ripp, S. (2000). Field application of genetically engineered microorganisms for bioremediation processes, Current Opinion in Biotechnology, 11, 286-289.
- [26] Scherr, K., Aichberger, H., Braun, R. & Loibner, A.P. (2007). Influence of soil fractions on microbial degradation behaviour of mineral hydrocarbons, European Journal of Soil Biology, 43, 341-350.
- [27] Shkidchenko, A.N., Boronin, A.M., Kobzev, E.N., Petrikevich, S.B., Chugunov, V.A. & Kholodenko, V.P. (2004). Biodegradation of black oil by microfl ora of the Bay of Biscay and biopreparations, Process Biochemistry, 39, 1671-1676.
- [28] Tongarun, R., Luepromchai, E. & Vangnai, A.S. (2008). Natural Attenuation, Biostimulation and Bioaugmentation in 4-Chloroaniline-Contaminated Soil, Current Microbiology, 56, 182-188.
- [29] Turco, R.F. & Sadowski, M.J. (1995). The Microflora of Bioremediation. In Skipper, H.D. and Turco, R.F. (Eds.), Bioremediation, Science and Applications (pp. 87-103). Special Publication 43. Soil Science Society of America. Washington, DC 1995.
- [30] Ueno, A., Ito, Y., Yumoto, I. & Okuyama, H. (2007). Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation, World Journal of Microbiology and Biotechnology, 23, 1739-1745.
- [31] Urum, K., Grigson, S., Pekdemir, T. & McMenamy, S. (2006). A comparison of the effi ciency of different surfactants for removal of crude oil from contaminated soils, Chemosphere, 62, 1403-1410.
- [32] Vidali, M. (2001). Bioremediation: an overview, Pure and Applied Chemistry, 73, 1163-1172.
- [33] Vogel, T.M. (1996). Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology, 7, 311-316.
- [34] Vogel, T.M. & Walter, M.V. (2001). Bioaugmentation. In Hurst, C.J., Crawford, R.L., Garland, J.L., Lipson, D.A., Mills, A.L. (Eds.), Manual of environmental microbiology (pp. 952-959). American Society for Microbiology Press, Washington DC 2001.
- [35] Zawierucha, I. & Malina, G. (2006). Bioaugmentation as a method of biodegradation enhancement in oil hydrocarbons contaminated soil, Ecohydrology & Hydrobiology, 6, 163-169.
- [36] Zawierucha, I., Szewczyk, A., Malina, G. (2007). Effect of temperature on the biodegradation rate in oil hydrocarbons contaminated soil, Polish Journal of Environmental Studies, 16(3B), 520-524.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b163033-80c3-4ac6-83d8-46b64a63046f