PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of addition oxy-hydrogen gas (HHO) on vehicle engines performance and emissions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrolysis process of water produces oxy-hydrogen (HHO) gas that can be used as an energy source to solve the shortage problem of fossil fuel and reduces the exhaust emissions of greenhouse gases from vehicles engines. In this study, HHO dry cell generator was designed, fabricated and tested experimentally to investigate its performance. The hybrid internal combustion engines using HHO gas is considered one of the most important studied applications. The vehicle engines performance and gas emissions are investigated for two different engines; 150CC with carburetor and 1300CC with Electronic Control Unit (ECU). The results recorded the consumption of the fuel is reduced by 14.8% for 150CC engine and 16.3% for 1300CC engine. HHO gas reduced the emission gases by 33% and 24.5% reduction in CO and 27.4% and 21% reduction in HC for 150CC and 1300CC engines respectively. HHO gas can be efficient used as a secondary fuel for vehicle engines.
Rocznik
Strony
177--190
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Suez Canal University, 51422, Ismailia, Egypt
  • Mechanical Engineering Department, Suez Canal University, 51422, Ismailia, Egypt
Bibliografia
  • 1. Manieniyan V., Thambidurai M., Selvakumar R. Study on energy crisis and the future of fossil fuels. Proceedings of SHEE, Engineering Wing, DDE, Annamalai University, 2009.
  • 2. Öztürk S., Sözdemir A., Ülger Ö. The Real Crisis Waiting for the World: Oil Problem and Energy Security. International Journal of Energy Economics and Policy 2013; 3: 74-79.
  • 3. Höök M., Tang X. Depletion of fossil fuels and anthropogenic climate change: A review. Energy Policy 2013; 52: 797–809.
  • 4. Mohamed W. Variability in vehicle exhaust emissions and fuel consumption in urban driving pattern. American Journal of Vehicle Design 201; 3(1): 31-38.
  • 5. McCartney G., Hanlon P., Romanes F. Climate change and rising energy costs will change everything: a new mindset and action plan for 21st century public health. Public Health 2008; 122(7): 658–663.
  • 6. Zecca A., Chiari L. Fossil-fuel constraints on global warming. Energy Policy 2010; 38(1): 1–3.
  • 7. Piotr B., Joseph W., Andrzej S., Piotr P. The impact of alternative fuels on fuel consumption and exhaust emissions of greenhouse gases from vehicles featuring si engines. 12th International Conference on Combustion & Energy Utilisation. Energy Procedia 2015; 66: 21–24.
  • 8. Lan L., Yunshan G., Mingda W., Jiaqiang L., Zihang P., Yanan S., Liwei Z. Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions. Atmospheric Environment 2016; 102: 79-85.
  • 9. Rong H.C., Li-Bin C., Ming H.W., Ta-H L. Gasoline displacement and NOx reduction in an SI engine by aqueous alcohol injection. Fuel 2010; 89: 604–610.
  • 10. Dale T., Hongming X., Roger F.C., Vinod N., Xiangdong C. Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel 2011; 90: 1999–2006.
  • 11. Karagoz Y., Yuka N., Sandalci T., Dalkılıc A.S. Effect of hydrogen and oxygen addition as a mixture on emissions and performance characteristics of a gasoline engine. International Journal of Hydrogen Energy 2015; 40: 8750-8760.
  • 12. Al-Baghdadi M.A., Al-Janabi H.A. Improvement of performance and reduction of pollutant emission of a four stroke spark ignition engine fueled with hydrogen-gasoline fuel mixture. Energy Conversion and Management 2000; 41(1): 77–91.
  • 13. Ji C., Wang S. Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. International Journal of Hydrogen Energy 2009; 34(18): 7823–7834.
  • 14. Shah S.A.Q., Ali Z., Larik J., Kaimkhani A.A. Comparative study of dry cell and wet cell for the HHO gas generation as a supplement fuel for I.C. engine. International Conference on Computing, Mathematics and Engineering Technologies, 2018, Pakistan.
  • 15. Egan D.R., De León C.P., Wood R.J., Jones R.L., Stokes K.R., Walsh F.C. Developments in electrode materials and electrolytes for aluminium–air batteries. Journal of Power Sources 2013; 236: 293–310.
  • 16. Salem R.R. Theory of the electrolysis of water. Protection of Metals and Physical Chemistry of Surfaces 2008; 44(2): 120-125.
  • 17. Mamilla V.R., Murthy K.S., Krishna M.V., Swamy T.S., Ramesh A., Krishna M.U. Production of Brown’s gas using hydroxy generator. International Journal of Engineering & Technology 2018; 7(4.5): 428-457.
  • 18. Vino V.J., Ramanlal V.S., Madhusudhan Y. Performance analysis of Petrol-HHO Engine. Middle-East Journal of Scientific Research 2012; 12(12): 1634-1637.
  • 19. Abhilash R., Gopalakrishna K., Venkatesh K. Performance evaluation of an IC engine using oxy-hydrogen as a fuel supplement. Journal of Scientific & Industrial Research 2015; 74(3): 176-179.
  • 20. Shashikant J., Gabhane D., Deshmukh S.S. Investigating the effect of Oxy-Hydrogen (HHO) gas and Gasoline Blend Addition on the performance of constant speed internal combustion engines. International Engineering Research Journal 2015; 26-31.
  • 21. Sakhrieh A.H., Al-Hares A.N., Faqes F.A., Al-Baqain A.S., Alrafie N.H. Optimization of oxyhydrogen gas flow rate as a supplementary fuel in compression ignition combustion engines. International Journal of Heat and Technology 2017; 35(1): 116-122.
  • 22. Bhavesh V. Chauhan, Gaurav P. Rathod, Tushar M. Patel. An experimental investigation of HHO gas and varying compression ratio on performance characteristics of constant speed diesel engine. Journal of Mechanical and Civil Engineering 2016; 13(2): 41-47.
  • 23. Ragupathy K. Modeling and analysis of diesel engine with addition of hydrogen-hydrogen-oxygen gas. Thermal Science 2017; 21(2): 465-471.
  • 24. Pawar P., Baheti P., Darade S., Menghani P.D. Performance analysis of gasoline engine by addition of HHO gas as a secondary fuel. International Conference on Ideas, Impact and Innovation in Mechanical Engineering 2017; 5(6).
  • 25. Govind B., Siva Sai N.V., Kumar B.R., Upendar S. Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas and LPG Enriched Gasoline. Journal of Mechanical and Civil Engineering 2015; 12(6): 44-51.
  • 26. Wang S., Ji C., Zhang B., Liu X., Performance of a hydroxygen blended gasoline engine at different hydrogen volume fractions in the hydroxygen. International Journal of Hydrogen Energy 2012; 37; 13209–13218.
  • 27. Mahendran M., Revanth S., Kumar M.S., R. Karthik S. Review of performance and emission characteristics of HHO Gas as a fuel. International Journal of Research in Engineering, Science and Management 2018; 1(11): 420-423.
  • 28. Wang S., Ji C., Zhang J, Zhang B. Improving the performance of a gasoline engine with the addition of hydrogen-oxygen mixtures. International journal of hydrogen energy 2011; 36: 11164-11173.
  • 29. EL-Kassaby M.M., Eldrainy Y.A., Khidr M.E., Khidr K.I. Effect of hydroxy (HHO) gas addition on gasoline engine performance and emissions. Alexandria Engineering Journal 2016; 55: 243–251.
  • 30. Vemula M. Krishna, Emissions control and performance evaluation of spark ignition engine with oxy-hydrogen blending. International Journal of Heat and Technology 2018; 36(1): 118-124.
  • 31. Rajasekaran T., Duraiswamy K., Bharathiraja M., Poovaragavan S. Characteristics of engine at various speed conditions by mixing of HHO with gasoline and LPG. Journal of Engineering and Applied Sciences 2015; 10(1): 46-51.
  • 32. Sunil Raj M., Ramakrishna A., Naveen kumar P. Modification of SI engine to HHO engine using HHO generator and its analysis. International Journal of Mechanical Engineering and Computer Applications 2014; 2(2).
  • 33. Musmar S.A., Al-Rousan A.A. Effect of HHO gas on combustion emissions in gasoline engines. Fuel 2011; 90: 3066–3070
  • 34. Al-Rousan A.A. Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold. international journal of hydrogen energy 2010; 35: 12930-35
  • 35. Yilmaz A.C., Uludamar E., Aydin K., Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines, International Journal of Hydrogen Energy 2010; 35: 11366–11372.
  • 36. Karagöz Y. Effect of hydrogen addition at different levels on emissions and performance of a diesel engine. Journal of Thermal Engineering 2018; 4(2): 1780-1790.
  • 37. George Wiseman. Brown's Gas; Book Two; Build a high quality Browns Gas electrolyze that will exceed the performance of ANY known commercial machine to date. 2000, Canada.
  • 38. HHO Hydrogen Generator Dry Cell Installation Manual Instructions Presented by LaBella’s Auto Repair http://labellasautorepair.com.
  • 39. Streblau M., Aprahamian B., Simov M., Dimova T. The enfluence of the electrolyte parameters on the efficiency of the oxyhydrogen (HHO) generator. 18th International Symposium on Electrical Apparatus and Technologies, 2014.
  • 40. Santilli R.M. A new gaseous and combustible form of water. International Journal of Hydrogen Energy 2006; 31(9):1113-1128.
  • 41. Barford, N.C. Experimental Measurements: Precision Error and Truth. John Wiley & Sons, New York, 1990.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b1598fb-0511-4fe2-9cee-08d6baf8f0f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.