PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove existence of positive solutions to a boundary value problem depending on discrete fractional operators. Then, corresponding discrete fractional Lyapunov-type inequalities are obtained.
Rocznik
Strony
31--40
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Houari Boumedienne University Laboratory of Dynamic Systems Algiers, Algeria
  • Center for Research and Development in Mathematics and Applications (CIDMA) Department of Mathematics University of Aveiro, 3810-193 Aveiro, Portugal
Bibliografia
  • [1] F.M. Atici, P.W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17 (2011) 4, 445-456.
  • [2] N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst. 29 (2011) 2, 417-437.
  • [3] N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems, Signal Process. 91 (2011) 3, 513-524.
  • [4] A. Canada, S. Villegas, A Variational Approach to Lyapunov Type Inequalities, Springer--Briefs in Mathematics, Springer, Cham, 2015.
  • [5] A. Chidouh, D.F.M. Torres, A generalized Lyapunov's inequality for a fractional boundary value problem, J. Comput. Appl. Math. 312 (2017), 192-197.
  • [6] R.A.C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem,, Fract. Calc. Appl. Anal. 16 (2013) 4, 978-984.
  • [7] R.A.C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl. 412 (2014) 2, 1058-1063.
  • [8] R.A.C. Ferreira, Some discrete fractional Lyapunov-type inequalities, Fract. Differ. Calc. 5 (2015) 1, 87-92.
  • [9] C.S. Goodrich, Solutions to a discrete right-focal fractional boundary value problem, Int. J. Difference Equ. 5 (2010) 2, 195-216.
  • [10] C. Goodrich, A.C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.
  • [11] A. Guezane-Lakoud, R. Khaldi, D.F.M. Torres, Lyapunov-type inequality for a fractional boundary value problem with natural conditions, SeMA Journal, DOI: 10.1007/s40324-017-0124-2.
  • [12] D.J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering, vol. 5, Academic Press, Boston, MA, 1988.
  • [13] M. Hashizume, Minimization problem related to a Lyapunov inequality, J. Math. Anal. Appl. 432 (2015) 1, 517-530.
  • [14] T. Kaczorek, Minimum energy control of fractional positive electrical circuits with bounded inputs, Circuits Systems Signal Process. 35 (2016), 1815-1829.
  • [15] A. Liapounoff, Probleme general de la stabilite du mouvement, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 9 (1907), 203-474.
  • [16] T. Sun, J. Liu, Lyapunov inequality for dynamic equation with order n + 1 on time scales, J. Dyn. Syst. Geom. Theor. 13 (2015) 1, 95-101.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b1224d3-cd57-4fba-abbf-633df6713e9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.