PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recycling of Gold From Waste Electrical and Electronic Equipment by Electrorefining of Copper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the methods of processing gold-plated pins from, among others, used computer equipment and discusses the research results on the recovered metal. Due to the relatively small structure of the pins and the fact that the gold layer is only a few microns thick, recovering gold from them constitutes a significant challenge. On the other hand, gold is a precious metal which enables the collective removal of other metals to obtain pure gold. The suggested method involves compacting the gold-plated pins into an anode form and carrying out the electro-refining process. Metals, such as copper, tin and iron, pass into the anode sludge from which they can be extracted or serve as a commercial intermediate sold to smelter plants. The anode sludge was melted in the flame of an oxy-acetylene torch in a graphite crucible by adding borax. As a result of the melting, several metallic precipitates were obtained. Then they were hot-incorporated into a sample with a diameter of 30 mm and a height of 12 mm. Eventually, a pure gold alloy sample was obtained, which contains Cu 40.69%, Sn 9.61% and Au 48.58%.
Słowa kluczowe
Rocznik
Tom
Strony
371--382
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Institute of Materials and Biomedical Engineering Department of Metallurgy and Materials Engineering, University of Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Institute of Materials and Biomedical Engineering Department of Metallurgy and Materials Engineering, University of Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Institute of Materials and Biomedical Engineering Department of Metallurgy and Materials Engineering, University of Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Institute of Materials and Biomedical Engineering Department of Metallurgy and Materials Engineering, University of Zielona Góra, Poland
autor
  • Faculty of Mechanical Engineering, Institute of Materials and Biomedical Engineering Department of Metallurgy and Materials Engineering, University of Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Institute of Materials and Biomedical Engineering Department of Metallurgy and Materials Engineering, University of Zielona Góra, Poland
autor
  • Department of Economics and Management in Industry, Faculty of Materials Science and Technology, VŠB – Technical University of Ostrava, Czech Republic
  • Department of Economics and Management in Industry, Faculty of Materials Science and Technology, VŠB – Technical University of Ostrava, Czech Republic
Bibliografia
  • Burke, M. (2007). The gadget scrap heap, Chem. World, 45-48.
  • Chamier-Gliszczynski, N., Krzyzynski, T. (2005). On modelling three-stage system of receipt and automotive recycling. REWAS’04, Global Symposium on Recycling, Waste Treatment and Clean Technology 2005, 2813-2814, Madrid, Spain, 26-29 September 2004, Conference Paper, ISBN: 8495520060.
  • Chamier-Gliszczyński, N. (2010). Optimal Design for the Environment of the Means Transportation: A Case Study of Reuse and Recycling Materials. Sold State Phenomena, 165, 244-249. DOI: 10.4028/www.scientific.net/SSP.165.244
  • Chamier-Gliszczyński, N. (2011). Recycling Aspect of End-of Life Vehicles. Recovery of Components and Materials from ELVs. Key Engineering Materials, 450, 421-424. DOI: 10.4028/www.scientific.net/KEM.450.421
  • Chamier-Gliszczyński, N. (2011a). Reuse, Recovery and Recycling System of End-of Life Vehicles. Key Engineering Materials, 450, 425-428. DOI: 10.4028/www.scientific.net/KEM.450.425
  • Chamier-Gliszczyński, N. (2011b). Environmental aspects of maintenance of transport means, end-of life stage of transport means. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 50(2), 59-71. http://ein.org.pl/podstrony/wydania/50/pdf/07.pdf
  • Chmielewski, A.G., Urbański, T.S., Migdał, W. (1997). Separation technologies for metals recovery from industrial wastes, Hydrometallurgy, 45, 333-344.
  • Cyganowski, P., (2017), The recovery of gold from the aqua regia leachate of electronic parts using a core-shell type anion exchange resin, Journal of Saudi Chemical Society, 21(6), 1-12.
  • Gabryelewicz, I., Lenort, R., Wędrychowicz, M., Krupa, P., Woźniak, W. (2021). Environmental Loads Resulting from Manufacturing Technology, Rocznik Ochrona Srodowiska, 23, 613-628. DOI: 10.54740/ros.2021.043
  • Guadalupe, M.B., Valenzuela-García J.L., Gómez-Alvarez, A., Encinas-Romero, A.M., Mejía-Zamudio, F.A., Rosas-Durazo, A.J., Valenzuela-Frisby, R. (2021). Recovery of Ag, Au, and Pt from Printed Circuit Boards by Pressure Leaching. Recycling, 6(4), 67. DOI: 10.3390/recycling6040067
  • Kosacka-Olejnik, M., Kostrzewski, M., Marczewska, M., Mrówczyńska, B., Pawlewski, P. (2021). How Digital Twin Concept Supports Internal Transport Systems? – Literature Review. Energies, 14, 4919. DOI: 10.3390/en14164919
  • Kostrzewski, M. (2018). One Design Issue – Many Solutions. Different Perspectives of Design Thinking – Case Study. In: Uden L., Hadzima B., Ting IH. (eds) Knowledge Management in Organisations. KMO 2018. Communications in Computer and Information Science, 877, 179-190. Springer, Cham, DOI: 10.1007/978-3-319-95204-8_16
  • Lee, C.H., Tang, L.W., Popuri S.R. (2011). A study on the recycling of scrap integrated circuits by leaching, Waste Management & Research., 29, 677-685.
  • Lei, L.I., Song, W., GuoDong, W., Heng, W., ShiDing, W. (2020), Extraction of platinum and gold from copper anode slimes by a process of chlorinating roasting first and chlorinating leaching followed. Journal of Mining and Metallurgy Section B: Metallurgy, 56, 193-202.
  • Lenort, R., Baran, J., Wysokiński, M., Gołasa, P., Bieńkowska-Gołasa, W., Golonko, M., Chamier-Gliszczyński, N. (2019). Economic and environmental efficiency of the chemical industry in Europe in 2010-2016. Rocznik Ochrona Srodowiska, 21(2), 1398-1404.
  • Marko, A. (2022), European standardisation strategy, https://www.bitkom.org/sites/main/files/2022-05/220225_Stellungsnahme_Europ%C3%A4ische_Normungsstrategie_eng.pdf [01.04.2022].
  • Marsden, J. House, I. (2006). The Chemistry of Gold Extraction Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA.
  • Mehr, J., Haupt, M. (2021). The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash, Waste Management, 119, 330-341.
  • Mohaddeseh, V., Manouucher, V., Raheleh, M., Pezhman, S. (2019). Gold-Plated Electrode with High Scratch Strength for Electrophysiological Recordings, Scientific Reports volume 9, Article number: 2985.
  • Park, Y.J., Fray, D.J. (2009). Recovery of high purity precious metals from printed circuit boards, Journal of Hazardous Materials, 164, 1152-115.
  • Petter, P.M.H., Veit, H.M., Bernardes, A.M. (2014). Evaluation of gold and silver leaching from printed circuit board of cellphones, Waste Manag., 34, 475-482.
  • Sheng, P.P., Etsell, T.H. (2007). Recovery of gold from computer circuit board scrap using aqua regia, Waste Management & Research, 25, 380-383.
  • Sum, E.Y.L. (1991). The recovery of metals from electronic scrap, The Journal of The Minerals, Metals & Materials Society, 43, 53-61.
  • Syed, S. (2012). Recovery of gold from secondary sources - A review, Hydrometallurgy, 115, 30-51.
  • Talebi, F., Ghafoorifard, H., Ghafouri-Fard, H., Jahanshahi, A., Daveci, H. (2022). A straight-forward, inexpensive, low power continuous-flow µPCR chip using PCB-based heater electrodes with uniform temperature distribution, Sensors and Actuators A: Physical, 333(1).
  • Tuncuk, A., Stazi, V., Akcil A., Yazici, E.Y., Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Miner. Eng., 25, 28-37.
  • Wędrychowicz, M., Piotrowicz, A., Noga, P. (2022). Badania nad metodą recyklingu złota ze zużytego sprzętu elektrycznego i elektronicznego na drodze elektrorafinacji miedzi. Sprawozdanie wewnętrzne na zlecenie firmy nr UZ/IIMiB/3/2022, Zielona Góra.
  • Woźniak, W., Jakubowski, J. (2015). The choice of the cost calculation concept for the mass production during the implementation of the non-standard orders. 26th International-Business-Information-Management-Association Conference – IBIMA 2015, Madrid, Spain, pp. 2364-2371, ISBN: 9780986041952
  • Xiu, F.R., Zhang, F.S. (2009). Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: Effect of assisting agents, Journal of Hazardous. Materials, 170(1), 191-196.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b0c0f4f-943d-4345-88ab-ee64735bc1ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.