PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two Kinds of Invariance of Full Conditional Probabilities

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let G be a group acting on Ω and F a G-invariant algebra of subsets of Ω. A full conditional probability on F is a function P:F×(F∖{∅})→[0,1] satisfying the obvious axioms (with only finite additivity). It is weakly G-invariant provided that P(gA|gB)=P(A|B) for all g∈G and A,B∈F, and strongly G-invariant provided that P(gA|B)=P(A|B) whenever g∈G and A∪gA⊆B. Armstrong (1989) claimed that weak and strong invariance are equivalent, but we shall show that this is false and that weak G-invariance implies strong G-invariance for every Ω, F and P as above if and only if G has no non-trivial left-orderable quotient. In particular, G=Z provides a counterexample to Armstrong's claim.
Rocznik
Strony
277--283
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
  • Department of Philosophy Baylor University One Bear Place #97273 Waco, TX 76798-7273, U.S.A.
Bibliografia
  • [1] T. E. Armstrong, Invariance of full conditional probabilities under group actions, in: R. D. Mauldin et al. (eds.), Measure and Measurable Dynamics (Rochester, NY, 1987), Contemp. Math. 94, Amer. Math. Soc., Providence, RI, 1989, 1–21.
  • [2] T. E. Armstrong and W. D. Sudderth, Locally coherent rates of exchange, Ann. Statist. 17 (1989), 1394–1408.
  • [3] Y. Cornulier, Answer to “Totally right preorderable groups”, http://mathoverflow.net/questions/147141/totally-right-preorderable-groups (2013).
  • [4] B. Deroin, A. Navas, and C. Rivas, Groups, Orders and Dynamics, manuscript.
  • [5] P. H. Krauss, Representation of conditional probability measures on Boolean algebras, Acta Math. Acad. Sci. Hungar. 19 (1968), 229–241.
  • [6] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991.
  • [7] R. Parikh and M. Parnes, Conditional probabilities and uniform sets, in: A. Hurd and P. Loeb (eds.), Victoria Symposium on Nonstandard Analysis, Springer, Berlin, 1974, 180–194.
  • [8] S. Wagon, The Banach–Tarski Paradox, Cambridge Univ. Press, Cambridge, 1994.
  • [9] D. Witte, Arithmetic groups of higher Q-rank cannot act on 1-manifolds, Proc. Amer. Math. Soc. 122 (1994), 333–340.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b0211df-58a3-4d65-8e8c-9cf83b2e98e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.