PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Actuator failure compensation for two linked 2WD mobile robots based on multiple-model control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper develops a new actuator failure compensation scheme for two linked two-wheel drive (2WD) mobile robots based on multiple-model control. First, a configuration of two linked 2WD robots is described, and their kinematics and dynamics are modeled. Then, a multiple-model based failure compensation scheme is developed to compensate for actuator failures, consisting of a kinematic controller, multiple dynamic controllers and a control switching mechanism, which ensures system stability and asymptotic tracking properties. Finally, simulation results verify the effectiveness of the proposed failure compensation control system.
Rocznik
Strony
763--776
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • UMR 9189—CRIStAL: Research Center in Computer Science, Signal and Automatic Control of Lille, University of Lille, CNRS, Centrale Lille, Lille F-59000, France
  • UMR 9189—CRIStAL: Research Center in Computer Science, Signal and Automatic Control of Lille, University of Lille, CNRS, Centrale Lille, Lille F-59000, France
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Bibliografia
  • [1] Akhtar, A., Nielsen, C. and Waslander, S. (2015). Path following using dynamic transverse feedback linearization for car like robots, IEEE Transactions on Robotics 31(2): 269–279.
  • [2] Aref, M., Oftadeh, R., Ghabcheloo, R. and Mattila, J. (2015). Fault tolerant control architecture design for mobile manipulation in scientific facilities, International Journal of Advanced Robotic Systems 12(4): 1–12.
  • [3] Bilski, A. and Wojciechowski, J. (2016). Automatic parametric fault detection in complex analog systems based on a method of minimum node selection, International Journal of Applied Mathematics and Computer Science 26(3): 655–668, DOI: 10.1515/amcs-2016-0045.
  • [4] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer-Verlag, Berlin/Heidelberg.
  • [5] Campion, G., Bastin, G. and D’Andrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Transactions on Robotics and Automation 12(1): 47–62.
  • [6] Canudas de Wit, C., NDoudi-Likoho, A. and Micaelli, A. (1997). Nonlinear control for a train-like vehicle, International Journal of Robotics and Research 16(3): 300–319.
  • [7] Canudas de Wit, C., Siciliano, B. and Bastin, G. (2012). Theory of Robot Control, Springer-Verlag, London.
  • [8] Caracciolo, L., Luca, A. and Iannitti, S. (1999). Trajectory tracking control of a four wheel differentially driven mobile robot, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 2632–2638.
  • [9] Dixon, W., Dawson, D., Zergeroglu, E. and Behal, A. (2001). Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 31(3): 341–352.
  • [10] Do, K., Jiang, Z. and Pan, J. (2004). A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots, IEEE Transactions on Robotics and Automation 20(3): 589–594.
  • [11] Efimov, D., Cieslak, J. and Henry, D. (2013). Supervisory fault-tolerant control with mutual performance optimization, International Journal of Adaptive Control and Signal Processing 17(4): 251–279.
  • [12] Fierro, R. and Lewis, F. (1995). Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics, Proceedings of the 34th Conference on Decision and Control, New Orleans, LO, USA, pp. 3805–3810.
  • [13] Fourlas, G., Karras, G. and Kyriakopoulos, K. (2015). Fault tolerant control for a 4-wheel skid steering mobile robot, 26th International Workshop on Principles of Diagnosis, Paris, France, pp. 177–183.
  • [14] Franzè, G., Tedesco, F. and Famularo, D. (2015). Actuator fault tolerant control: A receding horizon set-theoretic approach, IEEE Transactions on Automatic Control 80(8): 2225–2230.
  • [15] Fukao, T., Nakagawa, H. and Adachi, N. (2000). Adaptive tracking control of a nonholonomic mobile robot, IEEE Transactions on Robotics and Automation 16(6): 609–615.
  • [16] Ge, S., Wang, Z. and Lee, T. (2003). Adaptive stabilization of uncertain nonholonomic system by state and output feedback, Automatica 39(8): 1451–1460.
  • [17] Goel, P., Dedeoglu, G., Roumeliotis, S. and Sukhatme, G. (2000). Fault detection and identification in a mobile robot using multiple estimation and neural network, Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 2302–2309.
  • [18] González-Sierra, J., Aranda-Bricaire, E., Hernández-Mendoza, D. and Santiaguillo-Salinas, J. (2014). Emulation of n-trailer systems through differentially driven multi-agent systems: Continuous- and discrete-time approaches, Journal of Intelligent and Robotic Systems 75(1): 159–146.
  • [19] Hamayun, M.T., Edwards, C., Alwi, H. and Bajodah, A. (2015). A fault tolerant direct control allocation scheme with integral sliding modes, International Journal of Applied Mathematics and Computer Science 25(1): 93–102, DOI: 10.1515/amcs-2015-0007.
  • [20] Hassanabadi, A.H., Shafiee, M. and Puig, V. (2016). Robust fault detection of singular LPV systems with multiple time-varying delays, International Journal of Applied Mathematics and Computer Science 26(1): 45–61, DOI: 10.1515/amcs-2016-0004.
  • [21] Huang, J., Wen, C., Wang, W. and Jiang, Z. (2014). Adaptive output feedback tracking control of a nonholonomic mobile robot, Automatica 50(3): 821–831.
  • [22] Ji, M. and Sarkar, N. (2007). Supervisory fault adaptive control of a mobile robot and its application in sensor-fault accommodation, IEEE Transactions on Robotics 23(1): 174–178.
  • [23] Ji,M., Zhang, Z., Biswas, G. and Sarkar, N. (2003). Hybrid fault adaptive control of a wheeled mobile robot, IEEE/ASME Transactions on Mechatronics 8(2): 226–233.
  • [24] Khalaji, A. and Moosavian, S. (2014). Robust adaptive controller for a tractor-trailer mobile robot, IEEE/ASME Transactions on Mechatronics 19(3): 943–953.
  • [25] Kim, T., Park, J. and Kim, H. (2015). Actuator reconfiguration control of a robotic vehicle with four independent wheel driving, 15th International Conference on Control, Automation and Systems, Busan, Korea, pp. 1767–1770.
  • [26] Koh, M., Noton, M. and Khoo, S. (2012). Robust fault-tolerant leader-follower control of four-wheel-steering mobile robots using terminal sliding mode, Australian Journal of Electrical and Electronics Engineering 9(4): 247–254.
  • [27] Kozłowski, K. and Pazderski, D. (2004). Modeling and control of a 4-wheel skid-steering mobile robot, International Journal of Applied Mathematics and Computer Science 14(4): 477–496.
  • [28] Li, X. and Yang, G. (2012). Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures, IET Control Theory and Applications 6(10): 1544–1551.
  • [29] Michałek, M. (2014). A highly scalable path-following controller for N-trailers with off-axle hitching, Control Engineering Practice 29: 61–73.
  • [30] Michałek, M. (2017). Cascade-like modular tracking controller for non-standard N-trailer, IEEE Transactions on Control System Technology 25(2): 619–627.
  • [31] Morin, P. and Samson, C. (2012). Feedback control of the general two-trailers system with the transverse function approach, IEEE 51st Annual Conference on Decision and Control, Maui, HI, USA, pp. 1003–1010.
  • [32] Narendra, K. and Balakrishnan, J. (1997). Adaptive control using multiple-models, IEEE Transactions on Automatic Control 42(2): 171–187.
  • [33] Patton, R., Chen, L. and Klinkhieo, S. (2012). An LPV pole-placement approach to friction compensation as an FTC problem, International Journal of Applied Mathematics and Computer Science 22(1): 149–160, DOI: 10.2478/v10006-012-0011-z.
  • [34] Ritzen, P., Roebroek, E., Van de Wouw, N., Jiang, Z. and Nijmeijer, H. (2016). Trailer steering control of a tractor-trailer robot, IEEE Transactions on Control System Technology 24(4): 1240–1252.
  • [35] Rotondo, D., Nejjari, F. and Puig, V. (2015). Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults, International Journal of Applied Mathematics and Computer 25(1): 7–22, DOI: 10.1515/amcs-2015-0001.
  • [36] Rotondo, D., Puig, V., Nejjari, F. and Romera, J. (2014). A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot, IEEE Transactions on Industrial Electronics 62(6): 3932–3944.
  • [37] Skoundrianos, E. and Tzafestas, S. (2004). Finding fault: Fault diagnosis on the wheels of a mobile robot using local model neural networks, IEEE Robotics and Automation Magazine 11(3): 83–90.
  • [38] Sørdalen, O. and Wichlund, K. (1993). Exponential stabilization of a car with n trailers, 32nd Conference on Decison Control, San Antonio, TX, USA, pp. 978–983.
  • [39] Tan, C., Yang, H. and Tao, G. (2016). A multiple-model MRAC scheme for multivariable systems with matching uncertainties, Information Sciences 360(10): 217–230.
  • [40] Tao, G. (2003). Adaptive Control Design and Analysis, John Wiley & Sons, Hoboken, NJ.
  • [41] Tilbury, D., Sørdalen, O., Bushnell, L. and Sastry, S. (1995). A multisteering trailer system: Conversion into chained form using feedback, IEEE Transactions on Robotics and Automation 11(6): 807–818.
  • [42] Yang, H., Fan, X., Shi, P. and Hua, C. (2016). Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint, IEEE Transactions on Control Systems Technology 24(2): 741–746.
  • [43] Yang, X. and Maciejowski, J. (2015). Fault tolerant control using Gaussian processes and model predictive control, International Journal of Applied Mathematics and Computer Science 25(1): 133–148, DOI: 10.1515/amcs-2015-0010.
  • [44] Ye, D. and Yang, G. (2006). Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Transactions on Control Systems Technology 14(6): 1088–1096.
  • [45] Yu, X. and Jiang, J. (2015). A survey of fault-tolerant controllers based on safety-related issues, Annual Reviews in Control 39: 46–57.
  • [46] Yuan, J., Sun, F. and Huang, Y. (2015). Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching, IEEE/ASME Transactions on Mechatronics 62(12): 7665–7677.
  • [47] Zhang, X. and Cocquempot, V. (2014). Fault tolerant control for an electric 4WD vehicle’s path tracking with active fault diagnosis, 19th IFAC World Congress, Cape Town, South Africa, pp. 6728–6734.
  • [48] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229–252.
  • [49] Zou, A. and Kumar, K. (2012). Robust attitude coordination control for spacecraft formation flying under actuator failures, AIAA Journal of Guidance, Control and Dynamics 35(4): 1247–1255.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7afbc838-6ac8-418d-8b0a-da835793b296
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.