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 Abstract:The possibility of using neural networks to detect eccentricity of induction motors has been 
presented. A field-circuit model, which was used to generate a diagnostic pattern has been discussed. 
The formulas describing characteristic fault frequencies for static, dynamic and mixed eccentricity, 
occurring in the stator current spectrum, have been presented. Teaching and testing data for neural 
networks based on a preliminary analysis of diagnostic signals (phase currents) have been prepared. 
Two types of neural networks were discussed: general regression neural network (GRNN) and multi-
layer perceptron (MLP) neural network. This paper presents the results obtained for each type of the 
neural network. Developed neural detectors are characterized by high detection effectiveness of induc-
tion motor eccentricity.1 

Keywords: neural network, general regression neural network, multilayer perceptron, eccentricity, induc-
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1. INTRODUCTION 

Diagnostics and monitoring can influence the exploitation costs of the whole elec-
trical drive. Detection of damages in initial phase leads to appropriate action, thus pre-
venting their expansion to other motor components. In addition, efficient diagnosis may 
be important in complex industrial drives where motor failure can result in downtime 
of the whole system. Application so-called invasionless methods of damage detection 
of induction motors (IM) seems to be especially advantageous. Methods based on the 
analysis of stator current or mechanical vibrations are the most often applied because of 
their high effectiveness. The essential problem in the issue of diagnostics is a correct eval-
uation of the obtained symptoms of damages. A review of the detection methods of in-
duction motor eccentricity using stator current analysis has been presented elsewhere [1]. 

In the last years, implementations of neural networks (NN) in IM diagnostics have 
been often appearing, due to their very good generalization abilities and classification 
of data as well as effective NN training for the solving complex tasks. Those models are 
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one of the best methods for detecting nonlinear relations between patterns also in the 
presence of measurements noises and disturbances in the analyzed data. Fault symptoms 
are introduced as inputs of such structures, however at the output the information about 
the defect appearance and often degree of the motor damage is obtained. Solutions with 
classical multilayer perceptrons (MLP) have often been presented [2]. Training of the 
models is time consuming and may require a considerable computing power, being an 
obstacle, especially at the stage of the neural detector design. Moreover, the problem of 
an important significance for the quality of the diagnostic task realization arises, asso-
ciated with the selection of the NN structure. For the NN structure optimization, special 
algorithms should be used, which complicates the training process. Apart from that, 
preparing the MLP network for fault detection tasks requires the selection of many pa-
rameters of the NN model and a training method [2–5]. Other structures of NN were 
also tested in the fault diagnosis of induction motors, like Kohonen or RBF networks 
[2, 4, 6]. 

In this paper, the possibilities of application of the general regression neural net-
works (GRNN) and multilayer perceptrons in the detection of the IM eccentricity are 
tested. GRNN is characterized by very fast training process, realized automatically [7]. 
This special type of NNs is applied for prediction, modelling, classification, and data 
analysis [8]. Significant simplification in the process of GRNN design, combined with 
good precision of data classification, even in the presence of disturbances in inputs sig-
nals, predisposes this kind of NN for diagnostic process of electrical motors. Applica-
tions of GRNN for defect classification in electrical motors are rarely met in scientific 
papers. In this paper, the MLPs have been used to detect the type and degree of eccen-
tricity. Various structures of neural detectors were investigated. 

2. SYMPTOM VECTOR GENERATION 

Approximately 80% of mechanical damages of induction motors leads to eccen-
tricity. It should also be noted that the eccentricity can occur during the production of 
the machine or during the installation process. Monitoring of eccentricity makes a lot of 
problems because it must be carried out during normal motor operation (on-line), non-
invasive, so as not to change the balance of forces acting on the machine. Detection of 
the eccentricity is a very important part of monitoring and diagnosis of the IM.  

In this work, the field-circuit modelling is applied to the mathematical modelling of 
various types of eccentricities [5, 9, 10]. Spectral analysis of the phase current of the IM 
model with different levels of static, dynamic and mixed eccentricities, allowed obtain-
ing testing and learning data set for developed neural networks.  

Eccentricity of the electrical machines is a state when an unsymmetrical air gap ap-
pears between the stator and the rotor [5]. Slight crossing of tolerance limits of the length 
of the air crack can lead to the friction between the rotor and stator and in consequence 
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to the stator or the rotor damage. It can also intensify the influence of other negative 
phenomena such as power asymmetry, damage of the rotor or stator circuits, overloading 
motor operation, etc. There are three types of eccentricity: static, dynamic and a mixed one. 
Asymmetry of the air gap can disturb current transients, which is a result of character-
istic changes in mutual magnetic couplings between the motor windings. In the case of 
induction motors, an additional frequencies appear in the spectrum of the stator current, 
described by the equation: 

  1e s r d w
b

sf f kN n n
p
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 (1) 

where: fs – nominal frequency of the stator supply, s – motor slip, k = 1, 2, 3, ..., Nr – the 
number of rotor slots, nd = 0 for static eccentricity, nd = 1, 2, 3 ... in the case of dynamic 
eccentricity, pb – the number of motor winding poles, nw = ±1, ±3, ±5, ±7, – harmonic 
order.  

Moreover, the simultaneous occurrence of static and dynamic eccentricity in the sta-
tor current spectrum is connected with new components with frequencies close to the 
supply frequency:  

 ed s rf f kf   (2) 

The spectral analysis of the stator current cannot be successfully applied to all types 
of squirrel-cage induction motors. The main reason is that, only those machines that 
have a suitable combination of the number of rotor slots can generate characteristic high 
frequency components in the stator current spectrum. To be able to observe the charac-
teristic harmonics for static and dynamic eccentricities, the number of rotor slots Nr and 
the number of motor winding poles pb must satisfy the following relation [11]: 

  2 3r bN p m q k      (3) 

where: m ± q = 0, 1, 2, 3, …, and k = 1 or 2. 
Experimental modelling of eccentricity in the real machine or in a laboratory is very 

difficult, so for the generation of diagnostic symptoms the mathematical field-circuit 
model of the tested motor was used. The nominal parameters of tested machine  
(Sh-90L-4) are: power PN = 1.5 kW, speed nN = 1410 rpm, electromagnetic torque MN = 
10.16 N·m, voltage UN = 400 V, current IN = 3.5 A, power coefficient cos = 0.79, number 
of the rotor cage bars Nr = 26. This model was constructed using the Maxwell 2D soft-
ware (transient module). The geometry of the field-circuit model with a part of the dis-
cretization grid is presented in Fig. 1. In the field part of the model, the static, dynamic 
and mixed eccentricities were taken into account (by the appropriate moving of the sta-
tor and/or rotor along the x-axis). In any case, the center of the rotation remained un-
changed in the origin of the x-y coordinate system. 
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Fig. 1. The geometry of the IM field-circuit model with a part of the discretization grid (a),  

and scheme of the circuit part (b) 

 
Fig. 2. Coaxial and eccentric position of the rotor in the stator hole:  

a) motor without eccentricity, b) static eccentricity, c) dynamic eccentricity, d) mixed eccentricity  

Figure 2 shows the coaxial and eccentric position of the rotor in the stator hole, 
where: Os – axis of the stator symmetry, Or – axis of the rotor symmetry, O – axis of 
the rotor rotation. 

Preliminary analysis of the stator current spectrum allowed determining which char-
acteristic components are the best for NN training (the amplitude of those components 
varied linearly upon increasing eccentricity). In Figure 3, an exemplary spectra of stator 
current with the IM eccentricity obtained by the field-circuit modelling are presented.  
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Fig. 3. Spectra of the stator current for Sh-90L-4 motor (nominal load)  

without and with different types of eccentricity:  
(a) low-frequency band, (b) high-frequency band  

3. NEURAL NETWORKS 

In the preceding section, techniques used for fault symptoms generation have been 
presented. Based on the described methods, a large database of those symptoms was 
acquired. Direct analysis of the obtained results is difficult due to large number of data. 
In the paper, the analysis related to the fault detection is conducted by the NN.  
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Neural networks are models with structures and operating principles inspired by bi-
ological nerve cells. Their typical features are: adaptive abilities, parallel data pro-
cessing, approximation, generalization of data, classification and prediction. Properties 
of neural networks dedicate them to applications in many fields of science and engi-
neering. Increase of real hardware implementation of NN is connected with progress in 
microprocessor techniques, digital signal processors and FPGA platforms.  

3.1. GENERAL REGRESSION NEURAL NETWORK 

The application of GRNN for detection of induction motors eccentricity has been 
presented taking into account their good ability to approximate and generalize measure-
ment data sets [10]. These models are parallel implementation of statistical rules in the 
structure of artificial neural networks. A basic task for regression is finding relations 
between output variables Y and input variables X, based on data containing representa-
tive set of elements for the analyzed field. If we assume that X is a vector containing 
known inputs, it is possible to define the following scalar function [7]:  

 2 ( ) ( )i T i
iD   X X X X  (4) 

The parameter 2
iD  gives the information about the difference between two vectors. 

Using this factor, the estimate of vector Y can be calculated:  
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where:  – the width of sample probability for each sample Xi, Yi (smoothing parameter). 
The GRNNs have feed-forward topology that means that there is one fixed way of 

signal propagation between several layers in the network (Fig. 4). This structure con-
tains neurons grouped in layers (input, output and hidden). There are no connections 
between neurons in the hidden layer, therefore executing parallel calculations is possi-
ble. This feature is very important in a hardware implementation of the NN (e.g., using 
FPGA) [12]. In the regression theory, final equations describing the estimate value of 
output parameters use an exponential function, however in the process of the design and 
realization other activation functions, like sigmoid or radial basis functions (RBF) can 
be used.  

Neural network presented in Fig. 4 consists of four layers. The former one is the 
input layer, where the input vector is created for the next one. The next layer is called 
a pattern layer. 
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Fig. 4. Structure of general regression neural network  

At this stage of neural processing, the Euclidean distance between input vector val-
ues and centers of radial basis functions is calculated:  
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where X = [x1, x2, x3, ...., xN]T is the input vector, Cj – a vector related to the center of 
each neuron.  

Next parameters j(X) are scaled by multiplication of their values by bias values. 
Vector of biases has constant values for each neuron:  
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If the distance between the input vector and the RBF centers is equal to , the output 
of the pattern layer will be equal to 0.5. This is the average of possible values of the 
activation function. In this way, the input signal for radial basis function is obtained. 
This activation function is described by the following formula:  

 
2
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Next, the output signals of neurons in the pattern layer are introduced to the third sum-
mation layer. In this part of neural processing, the following calculations are performed:  
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In the last stage of computation, the obtained results are scaled by the K coefficient 
and introduced to a linear output neuron. K is a constant determined by the Parzen win-
dow. This parameter is independent of the input data [7].  

Neural model described above results from the mathematical background presented 
in [7]. Such structure of NN requires a special training algorithm however, exact method 
of structure and parameters selection is rather simple and fast to develop. The selection 
of parameters for GRNN is different than that for multilayer perceptrons (MLP). There 
is necessity to select centers in radial layer and weight values in the summation layer. 
For this purpose, a one-pass learning method is applied. Values of centers in radial neu-
rons are obtained by rewriting the values of inputs learning data, however weights in 
the summation layer are set to the output training data. Number of nodes in the input 
and output layer depends on the size of processing data in training process. One should 
emphasize very short duration of the whole process, in contrast to the classical MLP 
networks. Moreover, under such design procedure, a full repetitiveness of achieved re-
sults is possible, and the problem associated with random initial values of weights does 
not exist. Next advantage of applying such a structure of GRNNs and the method of 
their training is no necessity to make decision about the structure, which is important 
for correct realization of a given task.  

For optimizing the topology of the MLP networks special algorithms are often ap-
plied which are complicated and usually require extending of the training process. It 
causes that the time of calculations is much longer and the process needs more compu-
ting power. In the case of the MLP networks, a necessity of initial processing of data 
based on linear scaling is often necessary. This operation is introduced for the adaptation 
of the input data to the range of activation function with significant changeability.  

In the case of the GRNN, the Euclidean the distance between the input data and the 
centers of radial function is only counted. The centers are equal to input training data, 
so the compared values are similar. In the designing process for specific structure of the 
described NN networks and their training algorithm, just the parameter  is chosen. In 
calculations inside the network, this parameter influences the calibrating of data intro-
duced to radial nodes. Therefore it acts as the shaping factor of radial functions. In the 
GRNN, large matrices must be transformed during the computation process. For this 
reason, read-only-memory and look-up table are used in hardware application, so they 
often are called memory-based neural network. Properties resulting from the specific 
structure and parameters of GRNN predispose them to applications in classification and 
approximation of data.  

3.2. MULTILAYER PERCEPTRON 

The most frequently used neuron architecture in practical applications is unidirec-
tional, it is also defined as multi-layer perceptron (MLP) [13]. The MLP network struc-
ture (Fig. 5) includes neurons connected with each other and grouped into layers (input 
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and output layer and also hidden layers which do not have any direct connection with 
external signals). In addition to this, there are no connections between neurons in the 
same layer. Activation functions of input and output neurons are linear, while in the 
hidden layers, the hyperbolic tangent was used. In Figure 5, two different cases regard-
ing the objective of the network are shown. They will be described in details in the 
following sections. 

 
Fig. 5. Sample structure of neural network with one or two neurons in the output layer  

The output signal of a particular neuron is given by the following equation:  
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where: f – the activation function, wij – weighting factors, xi – input signals, β – correc-
tion factor for the shape of the activation function, u – activation function argument,  
w0j – bias value. 

The values of the weight connection coefficients were selected using the Levenberg 
–Marquardt algorithm [13]. 

4. RESULTS OF THE TEST 

The diagnostic process consists of the following stages: registration of the relevant 
physical quantities of the prepared motor model (field-circuit model), processing of the 
obtained data to extract the fault features, and classification of symptoms in the final 
stage using the developed neural network. The simulations and calculations associated 
with the detectors have been carried out in the Matlab–Simulink. Designed neural esti-
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mators were tested with the data not used in the training process. Tested motor was 
unsymmetrical (in one or two phase windings the current value was different). The train-
ing vector contains information from phase A and B, for tests – magnitudes of compo-
nents from phase C were used. The NN output values present the information about 
eccentricity occurrence and on the type of the motor eccentricity (0 – the motor without 
eccentricity, 1 – static eccentricity, 2 – dynamic eccentricity and 3 – mixed eccen-
tricity). The input vector of the NN was formed with magnitudes of components de-
scribed by equations (1) for nd = 0 and nw = –1, nd = 2, and nw = –1, nd = –2 and nw = 1, 
k = 1. Additionally, elements calculated according to the formula (2) for k = 1 and the 
motor speed were introduced into this input vector (Figs. 4, 5). It should be mentioned 
that during the tests, six different values of the load torque were applied (nominal and 
five values less than nominal).  

4.1. GENERAL REGRESSION NEURAL NETWORK  

The tests were made for different values of the  parameter, and show  influence 
on calculation results of the GRNN networks. Table 1 contains several tested values of 
the  parameter and the corresponding detection quality. Quality of the detection is cal-
culated as a percentage of correct indications for 120 sets of tested samples. Proper 
selection of the  parameter for the GRNN is one of the most important issues in the 
design process of these neural detectors. Best results are obtained for  = 0.00044, qual-
ity of the detection was 95.83% in this case. This value of the  parameter was deter-
mined experimentally.  

Table 1. Percentage values of the detection quality  
of the IM eccentricity by GRNN for different   

  Quality of the detection 
[%] 

0.1 25.0
0.01 32.5
0.001 75.8

0.0001 68.3
0.00044 95.8
0.00001 15.0

 
Finding the correct  values is very easy in this case with the application of a simple 

searching algorithm. Using this algorithm, the implementation of the whole design pro-
cess of the GRNN detectors, including training and tests, takes about 4 s. It should be 
marked that additional scaling of the input data was not introduced. This is often applied 
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problem during the implementation of the MLP neural networks for calculation per-
formed with real data (e.g. high values of motor speed). 

 
Fig. 6. Graphical presentation of the GRNN detectors results 

In Figure 6, the graphical presentation of the results for the best detector is presented 
( = 0.00044). Type of the damage (0 – the motor without eccentricity, 1 – static eccen-
tricity, 2 – dynamic eccentricity and 3 – mixed eccentricity) is indicated at the NN out-
put. Figure 6 presents the output values rounded to integer numbers. The precision of 
the eccentricity detection is very high, even in the case of the eccentricity type detection.  

4.3. MULTILAYER PERCEPTRON  

The use of the MLP networks to detect eccentricities has also been investigated in 
this study. For this purpose, the structures with one (Table 2) and two (Table 3) hidden 
layers were tested. Teaching and testing were performed with the same learning and 
testing vectors for the GRNN networks. Before beginning the learning process, the mo-
tor speed was divided by 107. In order to average the results, 30 learning and testing 
series were performed. The results are summarized in Tables 2 and 3, respectively. 

The best average effectiveness of 30 tests of neural networks with one hidden layer 
was obtained for network of 6-9-1 structure. It was about 82%. Highest efficiency of 
93.3% has been reached for a network of 6-5-1 structure. The average time needed to 
teach the network varied from about 3 s for the 6-3-1 network to about 8 s for a network 
containing 17 neurons in the hidden layer. 
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Table 2. Detection effectiveness of induction motor eccentricity  
by the MLP neural networks with one hidden layer  

Effectiveness of 30  
learning and testing series, %

Neural network structure 
6-3-1 6-5-1 6-7-1 6-9-1 6-11-1 6-13-1 6-15-1 6-17-1 

Lowest 60.8 61.7 68.3 67.5 71.7 65.8 65.8 67.5 
Highest 92.5 93.3 91.7 91.7 90.0 90.0 86.7 92.5 
Average 73.4 76.2 81.6 82.4 81.4 79.5 79.1 80.1 

Table 3. Detection effectiveness of induction motor eccentricity  
by the MLP neural networks with two hidden layers  

Effectiveness of 30 
learning and testing series, %

Neural network structure
6-5-3-1 6-7-5-1 6-9-7-1 6-11-9-1 6-13-11-1 6-15-13-1 

Lowest 35.8 69.2 72.5 58.3 52.5 45.8 
Highest 94.2 95.0 95.0 95.0 91.7 93.3 
Average 86.6 86.5 85.4 80.9 77.3 75.0 

 
The use of neuron detectors with two hidden layers improves the eccentricity detection 

rate by only a few percent. The best average efficiency detection of approximately 87% was 
obtained for the network of 6-5-3-1 structure. The highest detection efficiency of 95% was 
achieved for three structures: 6-7-5-1, 6-9-7-1 and 6-11-9-1. Taking into account the lowest, 
highest and average effectiveness of 30 learning and testing series, the neural network of  
6-9-7-1 structure has the efficiency of detecting eccentricity at 73–95%. The average learn-
ing time of detectors with two hidden layers varies from about 5 s to about 10 s depend-
ing on the number of neurons. Figure 7 shows the result of testing the neural network of the 
6-7-5-1 structure. The efficiency of the neural detector was very high and was 90%.  

 
Fig. 7. Sample testing result of 6-7-5-1 neural network structure  
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The use of two neurons in the output layer allows one to detect the type of the ec-
centricity as well as to assess its level. The eccentricity levels connected to the respec-
tive output neurons are shown in Fig. 5. Table 4 summarizes the results obtained for 
a network with one hidden layer, and Table 5 for that with two hidden layers.  

Table 4. Detection effectiveness of induction motor eccentricity by the MLP neural networks 
with one hidden layer and two neurons in the output layer [%] 

Effectiveness of 30  
learning and testing series, % 

Neural network structure
6-3-2 6-5-2 6-7-2 6-9-2 6-11-2 6-13-2 6-15-2 
I II I II I II I II I II I II I II 

Lowest 60.0 35.8 78.3 75.0 82.5 75.8 77.5 76.7 83.3 73.3 76.7 70.8 80.8 71.7 
Highest 85.8 78.3 92.5 86.7 93.3 91.7 93.3 91.7 95.8 91.7 96.7 92.5 95.0 90.0 
Average 79.1 71.5 87.6 83.1 88.5 85.5 88.9 85.7 90.4 85.1 90.0 81.4 90.2 80.9 
Lowest 26.7 67.5 68.3 70.8 65.0 63.3 68.3 
Highest 68.3 80.8 85.8 86.7 90.8 89.2 85.0 
Average 59.9 75.1 78.1 79.3 80.3 77.4 77.3 

Table 5. Detection effectiveness of induction motor eccentricity by the MLP neural networks  
with two hidden layers and two neurons in the output layer [%] 

Effectiveness of 30  
learning and testing series, %  

Neural network structure
6-5-3-2 6-7-5-2 6-9-7-2 6-11-9-2 6-13-11-2 6-15-13-2 
I II I II I II I II I II I II 

Lowest 20.0 20.0 86.7 70.8 81.7 74.2 78.3 72.5 73.3 68.3 70.8 50.0 
Highest 95.8 92.5 98.3 93.3 98.3 91.7 95.8 89.2 95.8 90.8 93.3 83.3 
Average 88.2 84.9 92.6 85.7 91.6 84.7 89.0 82.0 87.6 76.8 85.2 71.9 
Lowest 15.0 67.5 70.8 68.3 63.3 46.7 
Highest 89.2 90.0 90.0 85.8 86.7 80.8 
Average 79.0 82.1 81.8 78.9 73.7 69.5 

 
Fig. 8. Sample testing result of 6-7-5-2 neural network structure  
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The use of two neurons in the output layer does not improve the average efficiency 
of neural detectors, which was about 80% for 6-11-2 and 82% for 6-7-5-2 and 6-9-7-2 
structures. The effectiveness of the assessment of static or dynamic eccentricity levels 
of the detectors is high and is over 80%. The average teaching time of tested detectors 
with two output neurons varied from about 4 s to 25 s depending on the number of 
neurons. 

The neural network shown in Fig. 8 has a very high efficiency of 87.5%. Effective-
ness of individual output neurons is also high, about 93% for neuron I and 92.5% for 
neuron II.  

5. CONCLUSION  

Neural detectors of eccentricity of induction motors have been presented. General 
regression neural networks and multilayer perceptron were applied. Using field-circuit 
modelling of the motor with different types of eccentricity, the necessity of creating 
a database with long-term experiments and measurements on real objects has been elim-
inated. Such an approach gives also a possibility to generate a very large number of 
diagnostic patterns necessary for training and testing neural detectors. GRNN networks 
can be the alternative to classical MLP networks. A simplified process of the detector 
design is an advantage for this type of neural networks. During the design process, a ne-
cessity to make a decision only about the value of the spread parameter of the activation 
function exists. Very good results for classification of the faults are obtained. A possi-
bility of detecting the type and level of the eccentricity are additional advantages of the 
proposed detectors.  
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