PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of wind and waves on ambient noise and bubble entrainment depth in the semi-enclosed Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Semi-enclosed, fetch-limited waters create unique conditions for wind wave development and breaking. Parameters of breaking waves influence bubble entrainment depth and associated noise, which is why they differ in semi-enclosed sea compared to open waters. While the established noise-wind speed relationship holds in oceanic conditions, it differs in land-constrained basins like the Baltic Sea. To explore noise level, bubble entrainment depth and wind speed relationships, we conducted noise and sub-surface bubble measurements, coupled with wind observations, in the selected area of the Baltic Sea during two consecutive summers. A novel method was employed to estimate bubble entrainment depth under conditions of strong backscatter. Model data of wave field parameters were employed to assess their influence on noise level and bubble entrainment depth. Results suggest stronger connections between noise level and wind speed, as well as wave height, compared to wave age and wind sea steepness. The same patterns hold true for the correlation between bubble entrainment depth and both wind speed and wave field parameters. The parameterized noise level-wind speed relationship differs from that obtained for oceanic conditions and also varies across measurement periods. Observed differences were shaped by varying wind-wave conditions, notably differences in wind speed, direction, wave height, and the presence of swell. The noise level-bubble entrainment depth relation is reported for the first time for Baltic Sea conditions. For a thorough analysis of the influence of these factors on noise and bubbles, longer measurements under diverse wind-wave conditions are required to account for site-specific wave field characteristics.
Czasopismo
Rocznik
Strony
299--318
Opis fizyczny
Bibliogr. 68 poz., fot., map., rys., tab., wykr.
Twórcy
  • Marine Physics Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Marine Physics Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
  • Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden
  • Marine Physics Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Ardhuin, F., Herbers, T.H.C., Watts, K.P., van Vledder, G.P., Jensen, R., Graber, H.C., 2007. Swell and Slanting-Fetch Effects on Wind Wave Growth. J. Phys. Oceanogr. 37, 908-931. https://doi.org/10.1175/JPO3039.1
  • 2. Bagočius, D., 2013. Underwater noise level in Klaipéda Strait. Lithuania. Baltica 26, 45-50. https://doi.org/10.5200/baltica.2013.26.05
  • 3. Bagočius, D., Narščius, A., 2022. The underwater sound levels of Lithuanian marine harbour. Mar. Pollut. Bull. 185, 114335. https://doi.org/10.1016/j.marpolbul.2022.114335
  • 4. Ballou, G., 2013. Handbook for sound engineers. Taylor & Francis, 1748 pp.
  • 5. Baltic Sea Wave Hindcast, n.d., E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). https://doi.org/10.48670/moi-00014 (accessed on 8-05-2023).
  • 6. Banner, M.L., Babanin, A.V., Young, I.R., 2000. Breaking Probability for Dominant Waves on the Sea Surface. J. Phys. Oceanogr. 30, 3145-3160. https://doi.org/10.1175/1520-0485(2000)030〈3145:BPFDWO〉2.0.CO;2
  • 7. Banner, M.L., Cato, D.H., 1988. Physical Mechanisms of Noise Generation by Breaking Waves — A Laboratory Study. In: Sea Surface Sound. Springer, Netherlands, Dordrecht, 429-436. https://doi.org/10.1007/978-94-009-3017-9_31
  • 8. Bierstedt, S.E., Hünicke, B., Zorita, E., 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A 67, 29073. https://doi.org/10.3402/tellusa.v67.29073
  • 9. Cato, D.H., 2019. Surface generated underwater noise in open and enclosed waters. In: Proceedings of the Acoustics. Cape Schanck, Victoria, Australia, 1-7.
  • 10. Cato, D.H., Tavener, S., 1997. Ambient sea noise dependence on local, regional and geostrophic wind speeds: Implications for forecasting noise. Appl. Acoust. 51, 317-338. https://doi.org/10.1016/S0003-682X(97)00001-7
  • 11. Chen, C., Millero, F.J., 1977. Speed of sound in seawater at high pressures. J. Acoust. Soc. Am. 62, 1129-1135. https://doi.org/10.1121/1.381646
  • 12. Chu, J.S., Long, S.R., Phillips, O.M., 1992. Measurements of the interaction of wave groups with shorter wind-generated waves. J. Fluid. Mech. 245, 191-210.
  • 13. Crawford, G.B., Farmer, D.M., 1987. On the spatial distribution of ocean bubbles. J. Geophys. Res. 92, 8231. https://doi.org/10.1029/JC092iC08p08231
  • 14. Ding, L., Farmer, D.M., 1994. Observations of Breaking Surface Wave Statistics. J. Phys. Oceanogr. 24, 1368-1387. https://doi.org/10.1175/1520-0485(1994)024〈1368:OOBSWS〉2.0.CO;2
  • 15. Donelan, M., 1987. The effect of swell on the growth of wind waves. Johns Hopkins APL Tech. Dig. 8, 18-23.
  • 16. Dragan, A., Klusek, Z., Lisimenka, A., 2010. Ambient noise, bubble clouds and wind speed relationships. In: Proceedings of the 10th European Conference on Underwater Acoustics ECUA 2010, 662-668.
  • 17. Evans, D.L., Watts, D.R., Halpern, D., Bourassa, S., 1984. Oceanic winds measured from the seafloor. J. Geophys. Res. 89, 3457. https://doi.org/10.1029/JC089iC03p03457
  • 18. Farmer, D.M., Lemon, D.D., 1984. The Influence of Bubbles on Ambient Noise in the Ocean at High Wind Speeds. J. Phys. Oceanogr. 14, 1762-1778. https://doi.org/10.1175/1520-0485(1984)014〈1762:TIOBOA〉2.0.CO;2
  • 19. Farmer, D.M., Vagle, S., 1988. On the determination of breaking surface wave distributions using ambient sound. J. Geophys. Res. 93, 3591. https://doi.org/10.1029/JC093iC04p03591
  • 20. Felizardo, F.C., Melville, W.K., 1995. Correlations between Ambient Noise and the Ocean Surface Wave Field. J. Phys. Oceanogr. 25, 513-532. https://doi.org/10.1175/1520-0485(1995)025〈0513:CBANAT〉2.0.CO;2
  • 21. Fisher, N.I., 1995. Statistical analysis for circular data. Cambridge Univ. Press, 269 pp.
  • 22. Foote, K.G., Knudsen, H.P., Vestnes, G., MacLennan, D.N., Simmonds, E.J., 1987. Calibration of acoustic instruments FDR fish density estimation: a practical guide. ICES Cooperative Research Report 144.
  • 23. Gemmrich, J., 2010. Strong turbulence in the wave crest region. J. Phys. Oceanogr. 40, 583-595. https://doi.org/10.1175/2009JPO4179.1
  • 24. Gemmrich, J.R., Farmer, D.M., 1999. Observations of the Scale and Occurrence of Breaking Surface Waves. J. Phys. Oceanogr. 29, 2595-2606. https://doi.org/10.1175/1520-0485(1999)029〈2595:OOTSAO〉2.0.CO;2
  • 25. Graham, A., Woolf, D.K., Hall, A.J., 2004. Aeration Due to Breaking Waves. Part I: Bubble Populations. J. Phys. Oceanogr. 34, 989-1007. https://doi.org/10.1175/1520-0485(2004)034〈0989:ADTBWP〉2.0.CO;2
  • 26. Grelowska, G., 2016. Study of Seasonal Acoustic Properties of Sea Water in Selected Waters of the Southern Baltic. Pol. Marit. Res. 23, 25-30. https://doi.org/10.1515/pomr-2016-0004
  • 27. Grelowska, G., Kozaczka, E., 2020. Changes in conditions of acoustic wave propagation in the Gdansk deep as an effect of climate changes in the Baltic Sea region. Mar. Pollut. Bull. 160, 111660. https://doi.org/10.1016/j.marpolbul.2020.111660
  • 28. Herman, A., 2022. Pogoda i klimat Zatoki Puckiej. In: Bolałek, J., Burska, D. (Eds.), Zatoka Pucka, Tom I Aspekty Geologiczne i Fizyczne. Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk, 159-175.
  • 29. Hwang, P.A., 2008. Observations of swell influence on ocean Surface roughness. J. Geophys. Res.-Oceans 113, C12024. https://doi.org/10.1029/2008JC005075
  • 30. Hwang, P.A., García-Nava, H., Ocampo-Torres, F.J., 2011. Observations of Wind Wave Development in Mixed Seas and Unsteady Wind Forcing. J. Phys. Oceanogr. 41, 2343-2362. https://doi.org/10.1175/JPO-D-11-044.1
  • 31. Ingenito, F., Wolf, S.N., 1989. Site dependence of wind-dominated ambient noise in shallow water. J. Acoust. Soc. Am. 85, 141-145. https://doi.org/10.1121/1.397722
  • 32. Karagali, I., Peña, A., Badger, M., Hasager, C.B., 2014. Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite. Wind Energy 17, 123-140. https://doi.org/10.1002/we.1565
  • 33. Kerman, B.R., 1988. Sea surface sound: natural mechanisms of surface generated noise in the ocean. In: Series C: Math. Phys. Sci., vol. 238. Kluwer Academic, Dordrecht, Boston, London, 652 pp.
  • 34. Kim, B.-C., Choi, B.K., 2006. Variation of underwater ambient noise observed at IORS station as a pilot study. Ocean Sci. J. 41, 175-179. https://doi.org/10.1007/BF03022422
  • 35. Klusek, Z., 1977. Directivity of the noise field in the Southern Baltic Sea. Stud. Mater. Oceanol. KBM PAN 17, 83-106.
  • 36. Klusek, Z., Lisimenka, A., 2016. Seasonal and diel variability of the underwater noise in the Baltic Sea. J. Acoust. Soc. Am. 139, 1537-1547. https://doi.org/10.1121/1.4944875
  • 37. Klusek, Z., Lisimenka, A., 2007. Ambient sea noise in the Baltic Sea. In: Proceedings of the 2nd International Conference and Exhibition on Underwater Acoustic Measurements: Technologies and Results, Crete, Greece, 625-632.
  • A. Dragan-Górska, N. Gorska, P. Markuszewski et al. Knudsen, V.O., Alford, R.S., Emling, J.W., 1948. Underwater ambient noise. J. Mar. Res. 7, 410-429.
  • 38. Lemon, D.D., Farmer, D.M., Watts, D.R., 1984. Acoustic measurements of wind speed and precipitation over a continental shelf. J. Geophys. Res. 89, 3462. https://doi.org/10.1029/JC089iC03p03462
  • 39. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin, Heidelberg, 378 pp. https://doi.org/10.1007/978-3-540-79703-6
  • 40. Markuszewski, P., Klusek, Z., Nilsson, E.D, Petelski, T., 2020. Observations on relations between marine aerosol fluxes and surfacegenerated noise in the southern Baltic Sea. Oceanologia 62 (4), 413-427. https://doi.org/10.1016/j.oceano.2020.05.001
  • 41. Means, S.L., Heitmeyer, R.M., 2002. Surf-generated noise signatures: A comparison of plunging and spilling breakers. J. Acoust. Soc. Am. 112, 481-488. https://doi.org/10.1121/1.1491256
  • 42. Medwin, H., Beaky, M.M., 1989. Bubble sources of the Knudsen Sea noise spectra. J. Acoust. Soc. Am. 86, 1124-1130. https://doi.org/10.1121/1.398104
  • 43. Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE T. Syst. Man Cyb. 9, 62-66. https://doi.org/10.1109/TSMC.1979.4310076
  • 44. Perrone, A.J., 1969. Deep-Ocean Ambient-Noise Spectra in the Northwest Atlantic. J. Acoust. Soc. Am. 46, 762-770. https://doi.org/10.1121/1.1911759
  • 45. Pierson, W.J., Moskowitz, L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69, 5181-5190. https://doi.org/10.1029/JZ069i024p05181
  • 46. Piggott, C.L., 1964. Ambient Sea Noise at Low Frequencies in Shallow Water of the Scotian Shelf. J. Acoust. Soc. Am. 36, 2152-2163. https://doi.org/10.1121/1.1919337
  • 47. Pinto, J.G., Ulbrich, U., Leckebusch, G.C., Spangehl, T., Reyers, M., Zacharias, S., 2007. Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim. Dynam. 29, 195-210. https://doi.org/10.1007/s00382-007-0230-4
  • 48. Poikonen, A., Madekivi, S., 2010. Wind-generated ambient noise in a shallow brackish water environment in the archipelago of the Gulf of Finland. J. Acoust. Soc. Am. 127, 3385-3393. https://doi.org/10.1121/1.3397364
  • 49. Ramji, S., Latha, G., Rajendran, V., Ramakrishnan, S., 2008. Wind dependence of ambient noise in shallow water of Bay of Bengal. Appl. Acoust. 69, 1294-1298. https://doi.org/10.1016/j.apacoust.2007.09.001
  • 50. Rapp, R.J., Melville, W.K., 1990. Laboratory measurements of deep-water breaking waves. Philos. T. R. Soc. S.-A 331, 735-800. https://doi.org/10.1098/rsta.1990.0098
  • 51. Reeder, D.B., Sheffield, E.S., Mach, S.M., 2011. Wind-generated ambient noise in a topographically isolated basin: A preindustrial era proxy. J. Acoust. Soc. Am. 129, 64-73. https://doi.org/10.1121/1.3514379
  • 52. Shaw, P.T., Watts, D.R., Rossby, H.T., 1978. On the estimation of oceanic wind speed and stress from ambient noise measurements. Deep Sea Res. 25, 1225-1233. https://doi.org/10.1016/0146-6291(78)90015-2
  • 53. Sigray, P., Andersson, M., Pajala, J., Laanearu, J., Klauson, A., Tegowski, J., Boethling, M., Fischer, J., Tougaard, J., Wahlberg, M., Nikolopoulos, A., Folegot, T., Matuschek, R., Verfuss, U., 2016. BIAS: A Regional Management of Underwater Sound in the Baltic Sea. In: Popper, A., Hawkins, A. (Eds.). The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology, vol. 875. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2981-8_126
  • 54. Soomere, T., 2023. Numerical simulations of wave climate in the Baltic Sea: a review. Oceanologia 65 (1), 117-140. https://doi.org/10.1016/j.oceano.2022.01.004
  • 55. Strand, K.O., Breivik, Ø., Pedersen, G., Vikebø, F.B., Sundby, S., Christensen, K.H., 2020. Long-Term Statistics of Observed Bubble Depth Versus Modeled Wave Dissipation. J. Geophys. Res.-Oceans 125, e2019JC015906. https://doi.org/10.1029/2019JC015906
  • 56. Thorpe, S.A., 1992. Bubble clouds and the dynamics of the upper ocean. Q. J. Roy. Meteor. Soc. 118, 1-22. https://doi.org/10.1002/qj.49711850302
  • 57. Thorpe, S.A., 1986. Measurements with an Automatically Recording Inverted Echo Sounder; ARIES and the Bubble Clouds. J. Phys. Oceanogr. 16, 1462-1478. https://doi.org/10.1175/1520-0485(1986)016〈1462:MWAARI〉2.0.CO;2
  • 58. Thorpe, S.P., 1982. On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer. Philos. T. R. Soc. S.-A 304, 155-210. https://doi.org/10.1098/rsta.1982.0011
  • 59. Trevorrow, M.V., 2003. Measurements of near-surface buble plumes in the open ocean with implications for high-frequency sonar performance. J. Acoust. Soc. Am. 114, 2672. https://doi.org/10.1121/1.1621008
  • 60. Vagle, S., Farmer, D.M., 1998. A comparison of four methods for bubble size and void fraction measurements. IEEE J. Oceanic Eng. 23, 211-222. https://doi.org/10.1109/48.701193
  • 61. Vagle, S., Large, W.G., Farmer, D.M., 1990. An Evaluation of the WOTAN Technique of Inferring Oceanic Winds from Underwater Ambient Sound. J. Atmos. Ocean. Tech. 7, 576-595. https://doi.org/10.1175/1520-0426(1990)007〈0576:AEOTWT〉2.0.CO;2
  • 62. Vakkayil, R., Graber, H.C., Large, W.G., 1996. Oceanic winds estimated from underwater ambient noise observations in SWADE. In: OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century. IEEE, 45-51. https://doi.org/10.1109/OCEANS.1996.572450
  • 63. Vincent, C.L., Graber, H.C., Collins, C.O., 2020. Effect of Swell on Wind Stress for Light to Moderate Winds. J. Atmos. Sci. 77, 3759-3768. https://doi.org/10.1175/JAS-D-19-0338.1
  • 64. Wang, D.W., Wijesekera, H.W., Jarosz, E., Teague, W.J., Pegau, W.S., 2016. Turbulent Diffusivity under High Winds from Acoustic Measurements of Bubbles. J. Phys. Oceanogr. 46, 1593-1613. https://doi.org/10.1175/JPO-D-15-0164.1
  • 65. Wickström, S., Jonassen, M.O., Vihma, T., Uotila, P., 2020. Trends in cyclones in the high-latitude North Atlantic during 1979-2016. Q. J. Roy. Meteor. Soc. 146, 762-779. https://doi.org/10.1002/qj.3707
  • 66. Wille, P.C., Geyer, D., 1984. Measurements on the origin of the wind-dependent ambient noise variability in shallow water. J. Acoust. Soc. Am. 75, 173-185. https://doi.org/10.1121/1.390411
  • 67. Zachowicz, J., Kramarska, R., Uścinowicz, S., 2004. The southern Baltic Sea—test field for international co-operation. Przegląd Geologiczny 52, 738-743.
  • 68. Zedel, L., 1994. Deep Ocean Wave Measurements Using a Vertically Oriented Sonar. J. Atmos. Ocean. Tech. 11, 182-191. https://doi.org/10.1175/1520-0426(1994)011〈0182:DOWMUA〉2.0.CO;2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7af26cfe-bc6a-4e83-a021-397074d5782a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.