PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sideslip angle estimation of in-wheel motor drive electric vehicles by cascaded multi-Kalman filters and modified tire model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reliable estimation of longitudinal force and sideslip angle is essential for vehicle stability and active safety control. This paper presents a novel longitudinal force and sideslip angle estimation method for four-wheel independent-drive electric vehicles in which the cascaded multi-Kalman filters are applied. Also, a modified tire model is proposed to improve the accuracy and reliability of sideslip angle estimation. In the design of longitudinal force observer, considering that the longitudinal force is the unknown input of the electric driving wheel model, an expanded electric driving wheel model is presented and the longitudinal force is obtained by a strong tracking filter. Based on the longitudinal force observer, taking into consideration uncertain interferences of the vehicle dynamic model, a sideslip angle estimation method is designed using the robust Kalman filter and a novel modified tire model is proposed to correct the original tire model using the estimation results of longitudinal tire forces. Simulations and experiments were carried out, and effectiveness of the proposed estimation method was verified.
Rocznik
Strony
185--208
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Jiangsu University, School of Automotive and Traffic Engineering, Zhenjiang 212013, China
autor
  • Jiangsu University, School of Automotive and Traffic Engineering, Zhenjiang 212013, China
autor
  • Jiangsu University, School of Automotive and Traffic Engineering, Zhenjiang 212013, China
autor
  • Jiangsu University, School of Automotive and Traffic Engineering, Zhenjiang 212013, China
autor
  • Jiangsu University, School of Automotive and Traffic Engineering, Zhenjiang 212013, China
  • Jiangsu University, School of Automotive and Traffic Engineering, Zhenjiang 212013, China
Bibliografia
  • [1] Wang, R,R., Zhang, H., Wang, J.M. (2014). Linear parameter-varying controller design for four wheel independently-actuated electric ground vehicles with active steering systems. IEEE Trans. Control. Syst. Technol., 22(4), 1281-1296.
  • [2] Guo, J.G., Dong H.X., Sheng, W.H., Tu, C. (2018). Optimum control strategy of regenerative braking energy for electric vehicle. Journal of Jiangsu University: Natural Science Editions, 39(2), 132-138.
  • [3] Chen, T., Xu, X., Chen, L., Jiang, H.B., Cai, Y.F. (2018). Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles. Mech. Syst. Signal Process, 101, 377-388.
  • [4] Shuai, Z.B., Zhang, H., Wang, J.M., Li, J.Q., Ouyang, M.G. (2014). Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over CAN Network with time-varying delays. IEEE Trans. Veh. Technol., 63(2), 591-602.
  • [5] Zhang, H., Wang, J.M. (2017). Active steering actuator fault detection for an automatically-steered electric ground vehicle. IEEE Trans. Veh. Technol., 66(5), 3685-3702.
  • [6] Jin, X.J., Yin, G.D., Chen, N. (2015). Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique. Mechatronics, 30, 286-296.
  • [7] Wang, R.R., Zhang, H., Wang, J.M., Yan, F.J., Chen, N. (2015). Robust lateral motion control of four-wheel independently actuated electric vehicles with tire force saturation consideration. Journal of The Franklin Institute, 352, 645-668.
  • [8] Nam, K., Fujimoto, H., Hori, Y. (2012). Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors. IEEE Trans. Veh. Technol., 61(5), 1972-1985.
  • [9] Xu, X., Chen, T., Chen, L., Wang, W.J. (2016). Longitudinal force estimation for motorized wheels driving electric vehicle based on improved closed-loop subspace identification. Journal of Jiangsu University: Natural Science Editions, 37(6), 650-656.
  • [10] Zhang, H., Zhang, G.G., Wang, J.M. (2016). H∞ observer design for LPV systems with uncertain measurements on scheduling variables: application to an electric ground vehicle. IEEE/ASME Trans. Mechatronics, 21(3), 1659-1670.
  • [11] Wang, R.R., Jing, H., Hu, C., Yan, F.J., Chen, N. (2016). Robust H∞ path following control for autonomous ground vehicles with delay and date dropout. IEEE Trans. Intell. Transp. Syst., 17(7), 2042-2049.
  • [12] Hu, C., Wang, R.R., Yan, F.J., Chen, N. (2016). Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles. IEEE Trans. Veh. Technol., 65(6), 4033-4043.
  • [13] Wang, R.R., Hu, C., Yan, F.J., Chadli, M. (2016). Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles. IEEE Trans. Intell. Transp. Syst., 17(7), 2063-2074.
  • [14] Jiang H.B., Cao, F.G., Zhu, W.W. (2018). Control method of intelligent vehicles cluster motion based on SMC. Journal of Jiangsu University: Natural Science Editions, 39(4), 385-390.
  • [15] Chen, B., Hsieh, F. (2008). Sideslip angle estimation using extended Kalman filter. Vehicle Syst. Dyn., 46(1), 353-364.
  • [16] Li, L., Song, J., Li, H.Z., Zhang, X.L. (2011). A variable structure adaptive extended Kalman filter for vehicle slip angle estimation. Int. J. Veh. Des., 56(1-4), 161-185.
  • [17] Boada, B.L., Boada, M.J.L., Diaz, V. (2016). Vehicle side slip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm. Mech. Syst. Signal Process., 72, 832-845.
  • [18] Li, L., Jia, G., Ran, X., Song, J., Wu, K.H. (2014). A variable structure extended Kalman filter for vehicle side slip angle estimation on a low friction road. Veh. Syst. Dyn., 52(2), 280-308.
  • [19] Liu, Y.H., Li, T., Yang, Y.Y., Ji, X.W., Wu, J. (2017). Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm. Mech. Syst. Signal Process., 88, 25-35.
  • [20] Leung, K.T., Whildborne, J.F., Purdy, D., Dunoyer, A. (2011). A review of ground vehicle dynamic state estimations utilising GPS/INS. Vehicle Syst. Dyn., 49(1-2), 29-58.
  • [21] Nam, K., Oh, S., Fujimoto, H. Hori, Y. (2013). Estimation of sideslip angle and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches. IEEE Trans. Ind. Electron., 60(3), 988-1000.
  • [22] Ma, B., Liu, Y.H., Gao, Y.F., Yang, Y.Y., Ji, X.W., Bo, Y. (2018). Estimation of vehicle sideslip angle based on steering torque. Int. J. Adv. Manuf. Technol., 94(9-12), 3229-3237.
  • [23] Liu, W., He, H.W., Sun, F.C. (2016). Vehicle state estimation based on minimum model error criterion combining with extended Kalman filter. Journal of The Franklin Institute, 353, 834-856.
  • [24] Jin, X.J., Yin, G.D. (2015). Estimation of lateral tire-road forces and sideslip angle for electric vehicles using interacting multiple model filter approach. Journal of The Franklin Institute, 352, 686-707.
  • [25] Leung, K.T., Whildborne, J.F., Purdy, D., Barber P. (2011). Road vehicle state estimation using low-cost GPS/INS. Mech. Syst. Signal Process., 25(6), 1988-2004.
  • [26] Bevly, D.M., Ryu, J.H., Gerdes, J.C. (2006). Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness. IEEE Trans. Intell. Transport. Syst., 7(4), 483-493.
  • [27] Damrongrit, P., Rajesh, R., John, A.G., Lew, J.Y. (2009). Development and experimental evaluation of a slip angle estimator for vehicle stability control. IEEE Trans. Control Syst. Technol., 17(1), 78-88.
  • [28] Tuononen, A.J. (2009). Vehicle lateral state estimation based on measured tyre forces. Sensors, 9, 8761-8775.
  • [29] Yoon, J.H., Li, S.E., Ahn C. (2016). Estimation of vehicle sideslip angle and tire-road friction coefficient based on magnetometer with GPS. Int. J. Automotive Technology, 17(3), 427-435.
  • [30] Madhusudhanan, A.K., Corno, M., Holweg, E. (2016). Vehicle sideslip estimator using load sensing bearings. Control Eng. Pract., 54, 46-57.
  • [31] Yoon, J.H., Peng, H. A cost-effective sideslip estimation method using velocity measurements from two GPS receivers. IEEE Trans. Veh. Technol., 63(6), 2589-2599.
  • [32] Wang, R., Wang, J.M. (2013). Tire-road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation. Control Eng. Pract., 21(1), 65-75.
  • [33] Chen, L., Bian, M., Luo, Y.G., Li, K.Q. (2015). Real-time identification of the tyre-road friction coefficient using an unscented Kalman filter and mean-square-error-weighted fusion. Proc. Inst. Mech. Eng. D. J. Automob. Eng., 230(6), 788-802
  • [34] Li, X., Song, X, Chan CY. (2014). Reliable vehicle sideslip angle fusion estimation using low-cost sensors. Measurement, 51, 241-258.
  • [35] Zhang, H., Huang, X.Y., Wang, J.M., Karimi, H.R. (2015). Robust energy-to-peak sideslip angle estimation with applications to ground vehicles. Mechatronics, 30, 338-347.
  • [36] Yoon, J.H., Peng, H. (2014). Robust vehicle sideslip angle estimation through a disturbance rejection filter that integrates a magnetometer with GPS. IEEE Trans. Intell. Transp. Syst., 15(1), 191-204.
  • [37] Wang, R.R„ Hu, C., Wang, Z.J., Yan, F.J., Chen, N. (2015). Integrated optimal dynamics control of 4WD4WS electric ground vehicle with tire-road frictional coefficient estimation. Mech. Syst. Signal Process, 60-61, 727-741.
Uwagi
EN
1. This work was supported by the National Natural Science Foundation of China (grant numbers U1564201 and U1664258), National Key Research and Development Program of China (grant number 2017YFB0102603), Key R&D Plan of Jiangsu Province (grant number BE 2016149 and BE2017129), 333 Project of Jiangsu Province (grant number BRA2016445), Natural Science Foundation of Jiangsu Province (grant number BK 20160525), and Natural Science Foundation of colleges and universities in Jiangsu Province (grant number 16KJB580012).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7af0e0e8-61eb-48f5-ac06-6c707a94a4f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.