Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a qualitative safety analysis of the Żelazny Most tailings pond is addressed. This object is one of the largest facilities of this type in the world being a crucial element in the technological line of copper production in KGHM Polska Miedź S.A. The assessment of the effectiveness of two types of preventive measures, i.e., relief wells and loading berms, is investigated based on displacement and stability analysis of two 2D cross-sections in a technical section of the dam. The study shows that the considered preventive measures generally have a positive impact on increasing the safety level of the structure during its further raise. In particular, their effectiveness is most evident when they are applied simultaneously. It is eventually suggested that the selection of final solutions to be applied on the facility should be based on the quantitative 3D analysis.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
181--194
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
autor
- KGHM Polska Miedź S.A. Oddział Zakład Hydrotechniczny, ul Polkowicka 52, 59-305 Rudna, Poland
Bibliografia
- [1] Blight, G. E. (1997). Destructive mudflows as a consequence of tailings dyke failures. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 125(1), 9–18. https://doi.org/10.1680/igeng.1997.28992
- [2] Cała, M. (2007). Convex and concave slope stability analyses with numerical methods. Archives of Mining Sciences, 52(1), 75-89.
- [3] Cała M., Flisiak J., 2001. Slope stability analysis with FLAC and limit equilibrium methods. FLAC and Numerical Modeling in Geomechanics (edited by Bilaux, Rachez, Detournay & Hart), A.A. Balkema Publishers, p. 111-114
- [4] Commend, S., Obrzud, R., Podleś, K., Truty, A., & Zimmermann, T. (2013). Numerics in Geotechnics and Structures: ZSOIL. PC: getting started.
- [5] Dong, L., Sun, D., & Li, X. (2017). Theoretical and Case Studies of Interval Nonprobabilistic Reliability for Tailing Dam Stability. Geofluids, 2017, e8745894. https://doi.org/10.1155/2017/8745894
- [6] Golestanifar, M., & Aghajani Bazzazi, A. (2010). TISS: A decision framework for tailing impoundment site selection. Environmental Earth Sciences, 61(7), 1505–1513. https://doi.org/10.1007/s12665-010-0466-x
- [7] Jiang, Q., & Tang, Y. (2015). A general approximate method for the groundwater response problem caused by water level variation. Journal of Hydrology, 529, 398–409. https://doi.org/10.1016/j.jhydrol.2015.07.030
- [8] Li, J., Li, C. P., Li, C. M., & Li, Z. X. (2009). Forecasting of infiltration route in tailings dam by Support Vector Regression. Journal of Safety Science & Technology, 5(1), 76–79.
- [9] Lorig L., Varona P., 2000. Practical slope stability analysis using finite-difference codes. Slope stability in surface mining (edited by Hustrulid, McCarter & Van Zyl), Society for Mining, Metallurgy and Exploration Inc. Littleton, p. 115-124.
- [10] Martin, T. E., & McRoberts, E. C. (1999). Some considerations in the stability analysis of upstream tailings dams. Proceedings of the Sixth International Conference on Tailings and Mine Waste, 99, 287–302.
- [11] Moxon, S. (1999). Failing again. International Water Power and Dam Construction, 51.
- [12] Owen, J. R., Kemp, D., Lèbre, É., Svobodova, K., & Murillo, G. P. (2020). Catastrophic tailings dam failures and disaster risk disclosure. International Journal of Disaster Risk Reduction, 42, 101361.
- [13] Ozcan, N. T., Ulusay, R., & Isik, N. S. (2013). A study on geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey). Environmental Earth Sciences, 69(6), 1871–1890.
- [14] Psarropoulos, P. N., & Tsompanakis, Y. (2008). Stability of tailings dams under static and seismic loading. Canadian Geotechnical Journal, 45(5), 663–675.
- [15] Rico, M., Benito, G., & Diez-Herrero, A. (2008). Floods from tailings dam failures. Journal of Hazardous Materials, 154(1–3), 79–87.
- [16] Rico, M., Benito, G., Salgueiro, A. R., Díez-Herrero, A., & Pereira, H. G. (2008). Reported tailings dam failures: A review of the European incidents in the worldwide context. Journal of Hazardous Materials, 152(2), 846–852.
- [17] Sitharam, T. G., & Hegde, A. (2017). Stability analysis of rockfill tailing dam: An Indian case study. International Journal of Geotechnical Engineering, 11(4), 332–342.
- [18] Tang, Y., Jiang, Q., & Zhou, C. (2016). Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary. Water Resources Research, 52(4), 2529–2550.
- [19] Wang, F. Y. (2009). Research on stability analysis and comprehensive assessment of the tailing dam based on the uncertainty theory [PhD Thesis]. Ph. D. dissertation
- [20] Wang, T., Zhou, Y., Lv, Q., Zhu, Y., & Jiang, C. (2011). A safety assessment of the new Xiangyun phosphogypsum tailings pond. Minerals Engineering, 24(10), 1084–1090.
- [21] Wang, X., Zhan, H., Wang, J., & Li, P. (2018). The stability of tailings dams under dry-wet cycles: A case study in Luonan,China. Water, 10(8), 1048.
- [22] Yin, G., Li, G., Wei, Z., Wan, L., Shui, G., & Jing, X. (2011). Stability analysis of a copper tailings dam via laboratory model tests: A Chinese case study. Minerals Engineering, 24(2), 122–130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ae86a32-5e1f-4d73-aa24-a125714792a3