Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
6th European Congress of Mathematics, 2-7 July 2012 Kraków
Języki publikacji
Abstrakty
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
127--134
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Mathematics, University of Iowa, Iowa City, IA 52242-1419,USA
Bibliografia
- [1] A. D. Arvanitakis, A proof of the generalized Banach contraction conjecture, Proc. Amer. Math. Soc. 131 (2003), 3647-3656.
- [2] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439.
- [3] M. Bestvina, R-trees in topology, geometry, and group theory, in: Handbook of geometric topology, North-Holland, Amsterdam 2002, 55-91.
- [4] S. C. Chu, J. B. Diaz, Remarks on a generalization of Banach’s Principle of contraction mappings , J. Math. Anal. Appl. 11 (1965), 440-446.
- [5] J. Dugundji, A. Granas, KKM maps and variational inequalities, Ann. Scuola Norm. Sup. Pisa 5 (1978), 679-682.
- [6] R. Espinola, M. A. Khamsi, Introduction to hyperconvex spaces, in: Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht 2001, 391-435.
- [7] H. Freundenthal, W. Hurewicz, Dehnungen, Verkurzungen, Isometrien, Fund. Math. 26 (1936), 120-122.
- [8] K. Goebel, Concise course on fixed point theorems, Yokohama Publishers, Yokohama 2002.
- [9] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge 1990.
- [10] A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York 2003.
- [11] W. Holsztyński, Une généralisation du théorème de Browwer sur les points invariants, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 603-606.
- [12] J. R. Jachymski, B. Schroder, J. D. Stein Jr., A connection between fixed-point theorems and tiling problems, J. Combin. Theory Ser. A 87 (1999), 273-286.
- [13] J. R. Jachymski, J. D. Stein Jr., A minimum condition and some related fixed-point theorems, J. Austral. Math. Soc. Ser. A 66 (1999), 224-243.
- [14] R. Kałuża, Through reporter’s eyes: The life of Stefan Banach, Birkhauser, Boston 1996.
- [15] W. A. Kirk, Hyperconvexity of H-trees, Fund. Math. 156 (1998), 67-72.
- [16] W. A. Kirk, Contraction mappings and extensions, in: Handbook of metric fixed point theory, Kluwer Acad. PubL, Dordrecht 2001, 1-34.
- [17] W. A. Kirk, Some recent results in metric fixed point theory, J. Fixed Point Theory Appl. 2 (2007), 195-207.
- [18] W. A. Kirk, Universal nonexpansive maps, Yokohama Publ., Yokohama 2008.
- [19] J. Merryfield, B. Rothschild, J. D. Stein Jr., An application of Ramsey’s theorem to the Banach contraction principle, Proc. Amor. Math. Soc. 130 (2002), 927-933
- [20] J. Merryfield, J. D. Stein Jr., A generalization of the Banach Contraction Principle, J. Math. Anal. Appl. 273 (2002), 112-120.
- [21] S. Reich, A.J. Zaslavski, Two results on Jachymski-Schroder-Stein contractions, Bull. Polish Acad. Sci. Math. 56 (2008), 53-58.
- [22] B. Sims, A mathematical pilgrimage, Austral. Math. Soc. Gaz. 28 (2001), no. 5, 232-237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ae18d75-de26-41d1-97aa-5d5b63ae896b