PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The modelling of layered rocks using a numerical homogenisation technique and an artificial neural network

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of creating a constitutive model of layered rocks based on an artificial neural network (ANN) is reported in this work. The ANN gives an implicit constitutive function Ʃⁿ⁺¹= F( Ʃⁿ , ΔE), relating the new state of homogenized stresses Ʃⁿ⁺¹ with the old state Ʃⁿ and with the increment of homogenized strains ΔƩ. The first step is to repeatedly run a strain- controlled homogenisation on an uni-dimensional finite element model of a periodic cell with elastic-plastic models (Drucker-Prager) of the components. Paths are created in (Ʃ, E) space, from which, a set of patterns is formed to train the ANN. A description of how to prepare this data and a discussion on ANN training issues are presented. Finally, the procedure based on trained ANN is put into a finite-element code (ZSoil.PC) as a user-delivered constitutive function. The approach is verified by comparing the results of the developed model basing on ANN with a direct (single-scale) analysis, which showed acceptable accuracy.
Rocznik
Strony
art. no. e2023007
Opis fizyczny
Bibliogr. 26 poz., rys., wz., wykr.
Twórcy
  • Cracow University of Technology, Idealogic Ltd.
  • Doctoral Studies, AGH University of Science and Technology, Idealogic Ltd.
  • Cracow University of Technology, Idealogic Ltd.
Bibliografia
  • 1. Baghbani, A., Choudhury, T., Costa, S., Reiner, J. (2022). Application of artificial intelligence in geotechnical engineering: A state-of-the-art review. Earth-Science Reviews, Vol. 228, https://doi.org/10.1016/j.earscirev.2022.103991
  • 2. Benardos, A., Kaliampakos, D. (2004). Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology 19(6): 597-605, http://doi.org/10.1016/j.tust.2004.02.128
  • 3. Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B. (2011). Algorithms for Hyper-Parameter Optimization. Advances in Neural Information Processing Systems 24: 2546-2554.
  • 4. Bergstra, J., Yamins, D., Cox, D.D. (2013). Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning, Vol. 28: I-115-I-123.
  • 5. Bishop, C.M. (2006). Pattern Recognition and Machine Learning. New York: Springer.
  • 6. Das, S.K., Basudhar, P. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics 33(8): 454-459, http://doi.org/10.1016/j.compgeo.2006.08.006
  • 7. Ferentinou, M., Sakellariou, M. (2007). Computational Intelligence tools for the prediction of slope performance. Computers and Geotechnics 34(5): 362-384, http://doi.org/10.1016/j.compgeo.2007.06.004, 2007
  • 8. Feyel, F. (1999). Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Materials Science, Vol. 16, Issues 1-4: 344-354.
  • 9. Ghaboussi, J., Pecknold, D.A., Zhang, M., HajAli, R.M. (1998). Autoprogressive training of neural network constitutive models. Int. J. Numer. Meth. Engng.,42: 105-126.
  • 10. Giuntoli, G., Aguilar, J., Vázquez, M., Oller, S., Houzeaux, G. (2019). A FE 2 multi-scale implementation for modelling composite materials on distributed architectures. Coupled Systems Mechanics, Vol. 8: 99-109.
  • 11. Goh, A., Kulhawy, F.H. (2003). Neural network approach to model the limit state surface for reliability analysis. Canadian Geotechnical Journal 40(6): 1235-1244, http://doi.org/10.1139/t03-056
  • 12. Hashash, Y.M.A., Jung, S., Ghaboussi, J. (2004). Numerical implementation of a neural network based material model in finite element analysis.International Journal for Numerical Methods in Engineering 59(7): 989-1005.
  • 13. Hertz, J., Krogh, A., Palmer, R.G. (1991). Introduction to the theory of neural computation. Redwood City, Calif: Addison-Wesley Pub.
  • 14. Keskar, N.S., Nocedal, J., Tang, P.T.P., Mudigere, D., Smelyanskiy, M. (2017). On large-batch training for deep learning: Generalization gap and sharp minima. 5 th International Conference on Learning Representations, ICLR 2017, Toulon, France.
  • 15. Lefik, M. (2002). Artificial neural network for modelling an effective behavior of composite materials. Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria, July 7-12. Austria: Vienna University of Technology.
  • 16. Lucon, P.A., Donovan, R.P. (2007). An artificial neural network approach to multiphase continua constitutive modelling. Composites, Vol. 38.
  • 17. Moayedi, H., Mosallanezhad, M., Rashid, A.S.A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput. & Applic. 32: 495-518, https://doi.org/10.1007/s00521-019-04109-9
  • 18. Najjar, Y.M., Huang, C. (2007). Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach. Computers and Geotechnics 34(5): 346-361, http://doi.org/10.1016/j.compgeo.2007.06.006
  • 19. Raschka, S. (2017). Python Machine Learning (in Polish: Python. Uczenie maszynowe). Gliwice: Helion.
  • 20. Shahin, M., Jaksa, M.B., Maier, H.R. (2008). State of the Art of Artificial Neural Networks in Geotechnical Engineering. Electronic Journal of Geotechnical Engineering, 8: 1-26.
  • 21. Smith, L.N. (2017). Cyclical Learning Rates for Training Neural Networks, IEEE Winter Conference on Applications of Computer Vision (WACV): 464-472, http://doi.org/10.1109/WACV.2017.58
  • 22. Szeliga, M. (2017). Data Science and Machine Learning. (in Polish: Data Science i uczenie maszynowe). Gliwice: Helion.
  • 23. Urbański, A. (2005). The unified, finite element formulation of homogenization of structural members with a periodic microstructure. Monograph no. 320. Kraków: Cracow University of Technology.
  • 24. Vlasov, A.N., Merzlakov, W.P., Uzow, B.S. (1990). Effective characteristics of deformational properties of layered media (in Russian: Effektivnyje harakteristiki deformacionnyh svojstv sloistyh porod, Osnowanija, fundamenty i mehanika gruntov).
  • 25. Waszczyszyn, Z. (1999). Neural Networks in the Analysis and Design of Structures. CISM Courses and Lectures No. 404. Wien-New York: Springer.
  • 26. ZSoil.PC. User Manual. https://zsoil.com/zsoil/tutorials
Uwagi
1. Section "Civil Engineering"
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7adebfe4-6e4b-49d2-be01-aa66145b32c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.