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In our work, the process effi ciency of the ECMM should be improved by using different combinations of nano-
particles and added electrolytes. The superior aim of this work is to improve and predict the ECMM machining 
characteristics of die hardened steel, namely material removal rate (MRR), Tool wear rate (TWR) and Surface 
Roughness (Ra). The machining conditions are optimized using Response Surface Methodology (RSM) based on 
Box Behnken Design. The better Nano electrolyte is optimized using Deer Hunting Optimization (DHO) based on 
the machined outcomes, and the performances are predicted using a hybrid Deep Neural Network (DNN) based 
DHO. The hybrid DNN-DHO based predicted outcome of MRR is 0.361 mg/min, TWR is 0.272 mg/min and 
Ra is 2.511 μm. The validation results show that our proposed DNN-DHO model performed well and obtained 
above 0.99 regression for both training and validation of DNN-DHO, where the root mean square error ranges 
between 0.018 and 0.024.
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INTRODUCTION

  Nowadays, the machining of hardened steel is mostly 
adapted by many nontraditional methods such as Laser 
beam machining, Electric discharge machining (EDM), 
etc.1. When using nontraditional methods, certain de-
bris attained in the machining gap cannot be removed 
quickly and may provide a minimal material removal rate 
(MRR). Electrochemical machining (ECM) is a process 
in which anodic dissolution based chemical activity is 
mainly responsible for material removal irrespective of 
material hardness2. When using the ECM process for 
machining the structure in the ranges of 1 to 999 μm 
is known as electrochemical micromachining (ECMM). 
ECMM offers several benefi cial activities such as tool 
wear reduction, the ability to machine hardened and high 
strength materials, and promoting smooth surfaces3, 4. 
Besides, greater material removal rate, quicker machining 
period, environmentally friendly behavior, and allowing 
the machining of chemically resistant materials such as 
super alloys, stainless steel, copper alloys, etc. Normally, 
steel and its alloy are generally considered weak mate-
rials due to their greater chemically reactive behavior. 
Thus, it leads to premature failure of the tool during 
the machining operation5. 

Electrochemical micromachining (ECMM) is consid-
ered a non-conventional approach, and the machining 
process is completely performed by the anodic dissolution 
behavior of the workpiece. In ECMM, the workpiece and 
tool electrode get entirely submerged in an electrically 
conductive electrolyte such as water, sodium hydroxide, 
Sodium nitrite, etc.6. Here, the workpiece is specifi ed as 
a positive electrode (anode), and the constant potential is 
given to the two electrodes. Such given potentials make 
the DC fl ow between the electrodes and dissolve the 
anode material. At the cathode, the reaction happened 
due to hydrogen gas generation7, 8. The electrolysis is 
the movement of the current through an electrically 
conductive medium between two electrodes which ends 
the circuit connection. The water-dependent solution is 

usually often used as an operating electrolyte. Anasane 
and Bhattacharyya9 investigated EMM machining on 
titanium by varying the electrolytes to determine its 
suitability. Seven different electrolytes (2 non-aqueous 
and 7 aqueous) are used to select the better-operating 
electrolytes based on the EMM machining performances. 
The author concluded that the titanium micromachining 
characteristics were outperformed for the non-aqueous 
based electrolyte combination, namely sodium bromide 
and ethylene glycol. Thanigaivelan et al.10 have investi-
gated the infl uences of various NaNO3 electrolytic con-
centrations. By keeping constant electrolyte temperature 
at 37±0.5 oC and 1A current throughout the experiment. 
The author found that 35 gm/l of electrolytic concentra-
tion produced better ECMM machinability of copper 
with a good surface fi nish.

At the time of ECMM machining on steel alloy, 
a Passive oxide fi lm, which develops during the anod-
izing phase when using water as an electrolyte, quickly 
avoids uniform dissolution and creates a rugged surface 
layer. Such a drawback gets minimized by using an 
acid electrolyte, this helps to prevent the formation of 
the precipitate by solving the insoluble waste agents11. 
Geethapriyan, T. et al.12 used NaCl as an electrolyte 
during ECMM operation of stainless steel-316 material 
and obtained a maximum of 1.345 mg/min of MRR with 
346.912 μm overcut at 0.5 g/l electrolyte concentration 
and 20 V voltage supply. Bhuyan, B.K. and Yadava, 
V.13, studied the electrochemical spark machining of 
borosilicate glass material using NaOH electrolyte and 
brass cutting wire and achieved signifi cant performance. 
Moreover, Sethi, A. et al.14 proposed a new eco-friendly 
electrolyte combining citric acid and NaNO3. The author 
attained better surface quality with effective microwire-
ECMM operation on an alloy of tungsten carbide and 
cobalt material. Although acidic electrolytes help with 
precipitate reduction, they may affect the effi ciency of 
the machining operation. To minimize all these issues, 
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nanoparticles were added to the electrolytes such as 
NaOH, NaCl, NaNO3, etc.15.

Once the nanoparticles are immersed in the electrolyte, 
the experiment’s total electrical conductivity enhances, 
and the material removal activity becomes more effec-
tive. Because the high conductivity of the nanoparticle 
enhances the processing parameters and the machining 
accuracy16, 17, another justifi cation for increased mate-
rial removal effi ciency is the nanoparticle metal ions. 
In comparison, the usage of nanoparticles tended to 
reduce the overcut as compared to the electrolytes with 
an absence of nanoparticles. So, it allows us to increase 
the precision of machining parameters18. Sekar et al.19 
utilized the copper particles suspended NaCl electrolyte 
to analyze die-hardened steel’s ECM machining analysis. 
The improved performances of MRR and surface rough-
ness rates were achieved because of the contribution of 
nanoparticles since the nanoparticles help to break the 
gas layer attained in the inter-electrode gap. Jiang et 
al.20 performed vibration-assisted wire electrochemical 
micromachining (WECCM) for machining microgrooves 
using sodium nitride electrolyte with B4C particles. The 
experimental fi ndings indicate that the introduction 
of B4C particles not only decreased the accumulated 
electrolytic products on the cathode wire surface. But 
also avoided the formation of bubbles in the machin-
ing gap zone and increased the surface strength of the 
microgrooves. Another author Geethapriyan T et al.21, 
used copper nanoparticles and added NaNO3 electrolyte 
solution in the ECMM process. The experiment was 
conducted to machine 430 grade stainless steel material 
with copper cutting wire. The author reported that the 
copper nanoparticle added NaNO3 electrolyte enhanced 
the localization region and surface quality with less 
stray current effect. The higher thermal conductivity of 
nanoparticle suspended NaNO3 produced better MRR 
and overcut than neat NaNO3 electrolyte. Moreover, 
Vinod Kumaar, J.R. et al.22 found better ECMM output 
performances while producing micro holes in 316 L grade 
stainless steel using copper nanopowder suspended citric 
acid electrolyte.

Even though machining output has been improved by 
choosing optimum process circumstances, the precision 
of machining, particularly the quality of the surface, 
always requires more enhancement for engineering ap-
plications23. Hence, some authors did several optimization 
methods such as Taguchi, Deep neural network model, 
hybrid optimization algorithms etc., to prefer the better 
target based on the performances. This multi-objective 
method helps to promote a more effi cient selective 
parameter from the outcomes24, 25. Pradeep et al.26 
experimented on ECMM using the electrode made of 
polymer Graphite to produce the greater aspect ratio 
based micro holes. ASTM A240 type stainless steel ma-
chining is comparatively studied based on cryogenically 
untreated and treated polymer graphite electrodes. The 
author used a multi-objective cuckoo search algorithm 
(MOCS) optimization method to fi nalize cryogenically 
treated electrodes’ superior performance. Krishnan, N. et 
al.27 proposed the L16 orthogonal array Taguchi method 
for multi-response optimization of ECMM. The author 
obtained optimal results at 80% duty cycle, 600 rpm 
rotational speed, 21V of the voltage supply, 0.2M elec-

trolyte concentration and 0.8 μm/s feed rate during the 
experimentation. After analyzing the confi rmatory test, 
the model attained a 0.245 performance grade improve-
ment action. Another multi-response optimization of the 
ECMM process was done by Panigrahi D. et al.28 using 
the Particle Swarm Optimization algorithm (PSO). The 
author utilized response surface methodology (RSM) to 
design the experiment model. After investigation, the 
author noticed that the optimized values were closer 
to the experimental outcomes. Moreover, Prakash, J. 
and Gopalakannan, S.,29, Ranganayakulu, J., et al.30 and 
Gautam, N., et al.31 have studied different optimization 
methods like Teaching-Learning-Based Optimization 
(TLBO) algorithm, Graph theory algorithm (GTA), Ta-
guchi, RSM, PSO and Genetic algorithms etc., and found 
better accuracy with less root mean square error values.

Based on the literature, many authors did experimenta-
tion on ECMM of ceramics like titanium, glass, different 
grades of stainless steel, etc. But the ECMM investigation 
with hardened die steel material was very rate. Due to 
the large applications of these hardened die steel mate-
rials in surgical instruments, nozzles, etc., the fi nishing 
of such products should be neat and precise. But, the 
precise micromachining of hardened die steel with the 
conventional machining method was impossible. Hence, 
this study mainly focused on determining the ECMM 
performances of hardened die steel because hardened 
die steels are very hard and brittle materials. However, 
the effi ciency of the ECMM process was improvised by 
some authors by utilizing different electrolyte solutions 
individually. In our work, two different electrolytes of 
NaNO3 and NaCl were combined to produce a more 
effective electrolysis process. However, in previous 
studies, the authors suspended different nanoparticles, 
such as copper nanopowder, B4C nanoparticles, etc., 
in the electrolyte to enhance the thermal conductivity 
of the electrolyte. The infl uence of hybrid nanoparticle 
suspended electrolytes was not yet investigated. In this 
study, combining two different nanoparticles was added 
to our proposed electrolyte solutions to enhance our 
novelty. Moreover, recently, researchers have analyzed 
the optimization performance of different machine 
learning algorithms. The ECMM parameter optimization 
and prediction behavior of our own hybrid Deep Neural 
Network based Deer Hunting Optimization algorithm 
was also comparatively studied.

The supreme contributions of this research work are 
listed below,

– To study the infl uence of different ZnO and SnO2 
nanoparticles, added NaCl and NaNO3 electrolytes during 
ECMM of hardened die steel.

– To obtain the optimal nanoparticle added electrolyte 
from 6 electrolytes by ECMM process.

– To study the infl uence of input process parameters 
such as electrolytic concentration, supply voltage and 
duty cycle in ECMM performance.

To optimize the ECMM process parameters by using 
RSM-BBD and hybrid DNN-DHO algorithm.

– To evaluate the prediction performance of the propo-
sed hybrid DNN-DHO algorithm in the ECMM process.

In this work, MATERIALS AND METHODOLOGY 
explains the proposed methodology, materials used du-
ring experimentation, and nanoparticle added electrolyte 
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preparation process. OPTIMIZATION AND PREDIC-
TION METHODS provides detailed information about 
response surface methodology and hybrid deep neural 
network based DHO design. The major result obtained 
from the DNN-DHO, RSM prediction and experimenta-
tion are given in RESULT AND DISCUSSION section 
and concluded at CONCLUSION as well.

MATERIALS AND METHODOLOGY

Materials used
In our work, the Tungsten carbide tool with a diameter 

of 150 microns is used to drill the hardened die steel 
by electrochemical micromachining technique. Here, 
the electrolyte without nanoparticles and nanoparticles 
are used comparatively. The nanoparticles such as zinc 
oxide (ZnO) and stannic oxide (oxides of tin or SnO2) 
are introduced with the electrolyte to improve the ma-
chining characteristics. Also, two different electrolytes, 
namely NaCl and NaNO3, were investigated.

Experiment planning
The step-by-step procedure of the proposed work is 

given in Figure 1. In this work, the electrochemical mi-
cromachining operation is initially held on the hardened 
die steel by making the micro holes. This process is 
achieved in two stages:

(i) The absence of nanoparticles in electrolyte 
(ii) Nanoparticles added electrolytes. 
The experiment design is planned by using the box 

Behnken approach from RSM. By using the obtained 
experimental results, the RSM and neural network 
models were trained. Finally, the hybrid deep neural 
network-based DHO prediction method is performed 
to forecast the optimized performances. 

Experiment setup and procedure
In this proposed work, the electrochemical micromachi-

ning of die hardened steel occurs by handling the drilling 
operation. The experiment is conducted by varying the 
voltage, duty cycle, and electrolytic concentration, and 
the machining outputs such as MRR (mg/min), TWR 
(mg/min), and surface roughness (μm) are analyzed. The 
ECMM machining process is demonstrated in Figures 
2 and 3. The nanoparticles added to electrolytic com-
binations are stored in the electrolytic tank, providing 
effi cient fl ushing activity during machining through the 
pump. In this, the workpiece made of hardened die steel 
act as an anode and the tungsten carbide tool electrode 
act as a cathode. In the workpiece, manual movement is 
achieved by moving it in an x-y direction, and a fi xture 
holds the workpiece. The tool movement as z-direction 
is achieved with a stepper motor, and the cathode tool is 
fi xed with this stepper motor. The amount of DC supply 
is provided between the tool and the workpiece. Figure 

Figure 1. Proposed scheme of Research Work

Figure 2. ECMM Experimental Setup
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silver, etc., are attained in the nanofl uids at less than 
100 nm. The increased size of suspended particles may 
tend to clog the fl ow channel of electrolytes. However, 
some investigations were done on the separate inclusion 
of different nanoparticles in various electrolytes. Based 
on the literature, the investigation of ECMM with ZnO 
and SnO2 nanoparticle suspended electrolyte was not yet 
done. This investigation uses six combinations of ZnO 
and SnO2 nano electrolytic blends to identify the optimal 
electrolyte blend. Because the selected ZnO and SnO2 
nanoparticles have high thermal and electrical conduc-
tivity, which may improve the effi ciency of ECMM of 
hardened die steel by using NaCl and NaNO3. For the 
entire combinations, 20, 25 and 30 g/l of electrolytic 
concentrations are utilized, in which 5 grams of nano-

4 and 5 represents the SEM analysis of before and after 
machining of the tool and workpiece. The SEM analysis 
reveals that the wear rates have participated in the tool 
during machining. 

Nano fl uid preparation
The properties of ECMM electrolytes get because of the 

contribution of nanoparticles. The machining characteri-
stics, namely MRR, and surface roughness, depend mainly 
on the thermal conductivity behavior. The contribution 
of nanoparticles helps to enhance thermal conductivity, 
and it tends to improve machining properties. In other 
words, it helps to enhance the electron availability on 
the tool surface and the electrolyte. Normally, the na-
noparticles, such as the oxides of aluminium, copper, 

Figure 3. ECMM machining of Die Hardened Steel

Figure 4. SEM Analysis of tool

Figure 5. SEM Analysis of before and after the machined workpiece
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particles are added for the entire mix proportions. The 
nanoparticles in the electrolytes are continuously stirred 

In the equation, the response is represented as Z; the 
intercepts, fi rst order, linear, and quadratic coeffi cient are 
ß0, ßi, ßii, ßij respectively. The ANOVA is used to evaluate 
the responses, giving the statistical design signifi cance. 
This work considered the experiment at seventeen runs 
of experiment progressed in design expert software. The 
three factors and level of the experiment are designed in 

Table 1. Electrolytic combinations

Table 2. Properties of Electrolytes

Figure 6. Layout of neural network

Table 3. Factors and ranges of parameters

to avoid the action of sedimentation. The electrolytic 
combinations used in this research work are given in 
Table 1. The properties of nano electrolytic fl uid are 
given in Table 2.

OPTIMIZATION AND PREDICTION METHODS

Response surface methodology
The formulation of mathematical correlations to opti-

mize, forecast, simulate and model the statistical design 
of the experiment using independent and dependent va-
riables of MRR, TWR, Ra and electrolyte concentration 
voltage and duty cycle in the tool of RSM32, 33. It defi nes 
the optimum solution in the corresponding region, which 
includes the range of input factors and responses from 
the machining system. This method uses a polynomial 
equation for mathematical interactions between factors 
and responses. The machining result from the system 
is highly infl uenced by these factors, which are hard to 
defi ne in the linear method. Hence the quadratic corre-
lation is used to reveal the response function.

 (1)

Box Behnken design. The design evaluates the probability 
value (p-value) and determination/regression coeffi cient 
(R2) to determine the signifi cance. The independent 
variable and its level range are given in Table 3. 

Hybrid DNN-DHO
The artifi cial neural network-based network, which 

consists of multiple hidden and visible layers, is called 
a deep neural network. This network consists of functions, 
biases, neurons, and weights. The new state of the art 
in the prediction and classifi cation of a large number 
of data with high accuracy is possible using deep neural 
networks34. This work uses DNN to predict the machi-
ning performance of the ECMM hardened die steel. 
This network’s testing, training and validation predict 
performances from the machining parameters. Process 
parameters of electrolytic concentration, voltage, and 
duty cycle are given in the input layer, which is moved to 
the hidden layer then the predicted outputs are obtained 
from the output layer, respectively. The layout of DNN 
is given in Figure 6.

In this network, the signal generation between inputs 
to the output layer is done by some neurons. They use 
the activation function to transform these signals. The 
size of the input vector is given as

 (2)
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 is used to predict the input values. In the hidden 
layer, the weights are calculated by using the equation 

 (3)

Where wij the weight obtained from the nodes, θ  
is biased and xi  denotes inputs. Then the activation 
function is

 (4)

Where X is an input vector,  is the network 
width and centre, and the  represented activation 
function of jth  neuron. The output variables are predicted 
during the training stage of DNN. The normalization 
of error values also is performed in this stage, and it is 
continued till the minimum error value is achieved. And 
the weight of the nodes is updated based on the error 
values. The weight is updated randomly using 

  (5)

In the equation, the learning rate is denoted as n, and 
error values are E. During this updation, the random 
values are selected, so the effi ciency of the network will 
be affected, and the prediction output becomes an error. 
And hence these values are getting optimized by using 
a deer hunting optimization algorithm, and the method 
of weight updation is explained. The main importance of 
this algorithm is improving effi ciency by reducing error 
using the weight optimization technique. 

Deer hunting optimization
The deer hunting action performed by humans is the 

major role of DHO, based on the desired optimal po-
sition. In our work, the weight values formed from the 
DNN are considered humans, and the small error values 
are considered Deer35. In other words, the weight values 
are selected based on the minimized error. 

Initialization of population:
The initialization behavior of weight value is achieved 

based on the following expressions, 

 (6) 

Where, the total weights are denoted as n, which acts 
as a solution in population X.

Exploration stage:
In this exploration stage, the minimal error values are 

determined based on position updating for the weight 
values. Two characters, such as leaders and successors, 
are attained in the entire weight values. Here, the suc-
cessor mainly contributes to selecting the best minimal 
error values. The position of the succeeding and the fi rst 
best weight values are represented as Xsuccesor

 and X
lead.

(i) Leaders position,
Each weight tries to achieve the best position during 

the position updating procedure.

 (7)
Where Xi and Xi+1 represents the position of the current 
and the next iterations.

The vector coeffi cients are denoted as L and Y, and the 
random number k is generated in the ranges of 0 and 2.

The coeffi cient vectors,   (8)

L = 2.c   (9)
Here, the random number c is in the intervals of 0 

and 1, and the parameter b ranges between –1 and 1. 
The maximum iteration is denoted as imax.

The position of the error values varies based on the 
weight values position. In other words, the position of 
weight values varies until it reaches the best position to 
reach the minimal error values. This behavior is achieved 
by adjusting the parameter of Y and L. 

(ii) Position of successor
This is an active exploration stage; in this stage, the 

weight values are more effectively attained for deter-
mining the minimal error values. The adjusting of the 
L vector (vector L<1) mainly contributed to achieving 
the optimal position. So, the updating of the successor 
position is superior to updating the position of the fi rst 
best position. Therefore, the global searching equation 
is expressed as,

  (10) 

For the weight values, the successor position is repre-
sented as Xsuccesor.

Here, optimal minimized error values are determined 
mainly by adjusting L. The random and the best-minimi-
zed error values are selected using L<1and when L>1. 
The optimized machining performances were re-obtained 
from the algorithm with minimal error. 

RESULT AND DISCUSSION

Effect of Nanofl uid on machining performance
The electrochemical micromachining performance of 

the drilling operation is conducted on the hardened die 
steel. The experimentation is performed under the six 
different combinations of electrolytes with nanoparticles. 
The major infl uence of different electrolyte concentra-
tions on the machining performance is analyzed. Figure 7 
represents the experimented machining performances of 
various nanofl uids in hardened steel. It depicts that the 
MRR increases with increasing the electrolytic concen-
tration. Nanoparticle added fl uid concerns the increase 
of MRR at a high electrolyte concentration at 25 g/l; 
beyond this amount, it tends to be reduced slightly. Fi-
gure 7(b) shows the tool wear rate decreases with the 
increase in electrolyte concentration. The proportion of 
nanoparticles in electrolyte gives the decreasing factor 
of tool wear at high concentrations and high voltages. 
Similar results were obtained by Elhami, S. and Razfar, 
M.R.36, while adding Al2O3 and Cu nanoparticles to 
NaOH electrolyte solution. The high material removal 
rate affects the surface fi nish of the material, and also, 
high temperature has the possibility of increasing tool 
wear. The increase of surface roughness with the incre-
ase of electrolyte concentration is given in Figure 7(c). 
A good combination of electrolytes achieves a better 
reaction between the workpiece and tool. It also per-
forms the removal of a chip on the workpiece surface. 

The optimum performance condition is achieved by 
combining NaCl with stannic and zinc oxide. The Stannic 
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oxide and zinc oxide added NaCl electrolytic solution 
outperforms the other electrolyte combinations. Howe-
ver, the wear rate is optimal for the NaCl and NaNO3 
solution. This is because, when adding nanoparticles to 
the electrolytes, thermal conductivity gets improved, so 
the attainable wear rate gets enhanced. The machining 
characteristics such as surface roughness and tool wear 
rate are optimal for the nanoparticles added NaCl. When 
using NaCl, the maximum mass transfer dissolution of 
die hardened steel happens. The increased mass disso-
lution of the workpiece increases the fl ow of voltage. 
At the same time, the contribution of NaNO3 during 
the machining process promotes moderate behaviors 
compared to NaCl due to its minimal thermal conduc-
tivity. When using the NaCl and NaNO3 combination, 
the outcoming performances are similar or quite varied 
to applying NaCl electrolyte.

Experimental results analysis
The experiment is designed on the response surface 

methodology of box Behnken design with 17 experi-
mental runs. The optimum condition obtained from the 
electrolyte suspended with nanoparticle is given to the 
statistical analysis. Compared to the other electrolyte 
combination, the best performances are obtained from 
the Stannic oxide (SnO2), and zinc oxide (ZnO) added 
to NaCl electrolytic solution. Besides the infl uence of 
Nanoparticles, smashing the insulation layer lies between 
the tool and workpiece and enhances the machining 

behaviors. Using this NaCl+SnO2+ZnO electrolyte, 
the workpiece was machined in an ECMM machine at 
different input levels of voltage, electrolytic concentra-
tion and duty cycle. 17 input parameter combinations, 
including 5 repeated input combinations, were obtained 
from RSM-BBD. And their respective ECMM output 
(MRR, TWR and Ra) values were observed and tabu-
lated. The infl uence of experimental parameters on the 
performance is given in Table 4. 

The polynomial equation for the analysis of ECMM 
parameters is explained below. The MRR, TWR, and 
Ra model is developed based on this equation. The 
response factors are analyzed by using this equation. 
MRR= –1143.68750 – 7.01250 A + 132.15000 B – 
0.478750 C + 0.015000 AB + 0.070000 AC – 0.117500 BC 
+ 0.096000 A² – 3.32500 B² + 0.006000 C² (11)
TWR = –80.70000 – 9.78750 A + 44.83750 B – 4.08250 C 
+ 0.155000 AB + 0.060000 AC + 0.025000 BC + 
0.084500 A² – 1.63750 B² + 0.030875 C² (12)
Ra = +50.24637 – 0.139750 A – 4.67237 B – 0.218237 C 
– 0.006500 AB – 0.000150 AC + 0.007575 BC + 
0.000885 A² + 0.135375 B² + 0.002204 C²  (13)

Where, A represents the concentration of electrolyte 
in g/l, B represents the amount of voltage supply in 
terms of V, and C denotes the percentage of duty cycle, 
respectively.

The above equations predict the response from the 
given input variables. The effectiveness of the lacked 

Figure 7. Experimented results for various electrolyte fl uids a) MRR, b) TWR, c) Ra
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fi t values for the experimented values is validated by 
using the ANOVA. The ANOVA response for the MRR, 
TWR and SR are categorized in Tables 5 & 6. From the 
tables, it reveals that the obtained p = values are less 
than 0.0001, and it makes the system more signifi cant. 
In this, voltage is majorly contributed to infl uencing 
the machining performances. The acceptability of the 
designed model is justifi ed by performing the fi sher test 
or F ratio. It is applied in the lack of fi t of the model 
if the probability of F value is less than 0.05 gives the 
signifi cant term. Otherwise, the model is insignifi cant. 

The perturbation effect of MRR by considering the 
entire input conditions, namely voltage, electrolytic 
concentration and duty cycle, are given in Figure 8. The 
fi gure shows that the maximum material removal rate is 
obtained at the maximum voltage level. The increasing 
voltage level tends to maximize the melting behavior 
of the material and impetuous forces, so more material 
gets removed from the machined zone. During machi-
ning, the formation of disturbing gas layers is broken 
by the assistance of nanoparticles, so the smooth MRR 
machining behavior is maintained. 

Table 4. ECMM machining parameters when using NaCl + SnO2 + ZnO electrolyte

Figure 8. MRR perturbation

Table 5. ANOVA of response variables

Table 6. Statistical result

Parametric Effect of MRR
The ratio of the removed volume of material to the 

total machining time is called the material removal rate 
(MRR). Before starting the analysis of MRR, the non-
-machined workpieces are weighed and compared with 
the weight of the machined workpiece. The MRR rate 
is calculated from equation 14, 

 (14)

Where, before and after machining of workpiece we-
ights are given as Wbf and Waf, the machining time is 
represented as T.
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Figure 9 demonstrates the 3-D Plots for analyzing the 
interrelation between the input machining conditions with 
the MRR rate. The infl uence of voltage and electrolytic 
concentration on MRR rate is given in Figure 9(a). 
By comparing the electrolytic concentration, voltage 
effi ciently enhances the material removal rate. The 
decreased MRR rate is achieved due to the enhanced 
chemical reaction of electrolytic concentration. Teimouri, 
R. and Sohrabpoor, H. also observed similar results by 
varying the voltage and electrolyte concentration37. At 
the maximum voltage level of 19 V and the maximum 
electrolyte concentration of 30 g/l, the highest MRR of 
0.359 mg/min is achieved. 

Figure 9 (b) represents the interaction of duty cycle 
electrolytic concentration over MRR. Compared to the 
duty cycle, quite greater performances are obtained 
due to the increase in Electrolytic concentration. By 
increasing the duty cycle, the MRR rate is increased 
because of the ability to increase the heat transfer rate. 
The maximum MRR of 0.332 mg/min is obtained at the 
increased electrolytic concentration of 30 g/l and duty 
cycle of 50%. The relationship between the voltage and 
the duty cycle for the MRR rate is given in Figure 9(c). 

At increased voltage conditions, the MRR rate is higher 
than the duty cycle. Improving the voltage levels incre-
ases the workpiece surface’s temperature, which tends 
to enhance the MRR characteristics27, 28, 22, and 40. At the 
voltage of 19 V and the duty cycle of 30%, the maximum 
MRR obtained in the experimentation is 0.36 mg/min. 

Tool Wear Rate
Tool wear rate is the measure of the difference between 

the weight of the before machined and after machined 
tool with respect to time. The rate of wear that occurs 
with the tool is comparatively less than the workpiece. 
The TWR rate is calculated by using equation 15, 

 (15)

Where, before and after machining of tool weights 
are given as Ebf and Eaf, the machining time is repre-
sented as T.

By increasing the voltage, the tool wear rate gets re-
duced. At the same time, the duty cycle and electrolytic 
concentration are directly proportional to the tool wear 
rate. Charak, A. and Jawalkar, C.S.38, have also found 

Figure 9. 3-D Surface plots for analyzing the effect of input parameters on MRR
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a signifi cant reduction in toot wear at lower electrolytic 
concentrations. The machining tool’s high carbon content 
is one reason for wear reduction. This is due to a high 
temperature of machining. The heat generated during 
machining diffuses into the spaces and decomposes the 
dielectric fl uid’s carbon at a very high temperature. The 
part of decomposed carbon got deposited around the 
electrode, preventing it from wearing. The perturbation 
effect of tool wear rate with respect to its input machi-
ning parameters is given in Figure 10.

Figure 11 demonstrates that the input voltage effectively 
enhances the wear rate, as Rajput V. et al.39 found. At 
voltage 17 V, more wear rate occurs than the effect of 
duty cycle and electrolytic concentration. This happens 
because the tool surface area gets reduced during voltage 
conditions. In view of electrolytic concentration, initial-
ly, the tool wear rate gets maximum. This is because 
of the enhanced gas bubble formation, which leads to 
wear around the cathode tool. The interrelationship 
between the tool wear rate with its input parameters, 
such as voltage and electrolytic concentration, is given 
in Figure 11(a). At minimal voltage conditions, the tool 
wear rate is increased to 0.270 mg/min and 0.501 mg/
min of TWR is obtained at a maximum voltage (19V). 

The relation between the duty cycle and the electrolytic 
concentration rate for analyzing the TWR is shown in 

Figure 11(b). In this, electrolytic concentration helps 
achieve minimal TWR, and the infl uence of the duty 
cycle disturbs the wear rate. This is because the incre-
asing duty cycle tends to enhance the machining time, 

Figure 10. Perturbation of TWR

Figure 11. 3D plots of TWR
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achieving the maximum tool wear rate of 0.510 mg/min 
at the duty cycle of 50%. Figure 11(c) represents the 
3-D plot for analyzing the infl uences of voltage and duty 
cycle on tool wear rate. Compared with the voltage, 
more wear rate is determined due to the infl uence of 
the duty cycle. The analysis reveals that the duty cycle 
maximizes the tool wear more effectively.

Surface Roughness (SR)
Higher deterioration is created on the surface of the 

workpiece due to larger cavities by enhanced voltage 
level. The workpiece can be duplicated only if the elec-
trolytic concentration and the voltage are maintained at 
the specifi ed value. Uneven surface dissolution and oxide 
fi lm are produced due to uneven electrical conductivity 
in the machining gap. Material dissolution is uniform, 
surface roughness is lower when the voltage is high (19V), 
but material dissolution is non-uniform, and surface 
roughness is higher when the voltage is low (17V). The 
increased duty cycle improves the surface’s roughness 
along the machine’s length. Electrolyte products are 
taken away during the less voltage level by the suitable 
fl ow rates. The density and electrolytic concentration 
are also high during the less voltage level40. The Ra 
of hardened die steel was improved mainly due to the 
presence of nanoparticles in the electrolyte. Sekar, T. 
et al.19 improvised the quality of the fi nished surface 
by suspending copper nanoparticles in the electrolyte. 

Figure 12 represents the perturbation analysis of surface 
roughness.

The 3D plot representation for analyzing the relation-
ship of machining parameter over the Surface roughness 
of the die hardened steel is demonstrated in Figure 13. 
Figure 13(a) represents the effect of voltage and elec-
trolytic concentration over Surface roughness. At the 

Figure 13. Response surface of surface roughness

Figure 12. Perturbation plot of surface roughness
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30 g/l of electrolyte concentration, 3.68 μm of surface 
roughness is obtained. The surface roughness behavior is 
more favorable due to the contribution of voltage. The 
interrelationship of duty cycle and electrolytic concentra-
tion for the surface roughness behavior is given in Figure 
13(b). Here, increasing the duty cycle tends to improve 
the surface roughness. Figure 13(c) reveals the infl uence 
of surface roughness over-voltage and duty cycle. Here, 
more surface roughness is achieved due to the infl uence 
of the duty cycle. This is because, by increasing the duty 
cycle, the machining time and the MRR rate increase, 
which tends to enhance the Surface roughness. The 

Figure 14. Comparison of actual and predicted results a) MRR, b) 
TWR, and c) Ra

maximum surface roughness was obtained at 5.8 μm in 
50% of the duty cycle and 19 V. 

Prediction of parameters using RSM and Neural network
In this work, the experimented values are predicted 

using RSM and hybrid DNN based DHO methods. 
The prediction behaviour is carried out only for the 
machining activities of optimally selected electrolytic 
combinations. The predicted result from the response 
surface methodology for MRR, TWR, and surface ro-
ughness are given in Figure 14. In the obtained results 
from the RSM, the actual and predicted values are 
founded to be closer to each other. A similar kind of 
result was noted by Gopinath C. et al.40 when using the 
RSM optimization method.

The experimented values are forecasted using our 
proposed hybrid model for DNN based DHO and are 
given in Figure 15. In this, the variations between the 
experimented and the predicted outcomes are much less, 
and the predicted outcomes are closer to the experimen-

a)

b)

c)

Figure 15. Comparison of predicted values from RSM, DNN-DHO, 
DNN a) MRR, b) TWR, c) Ra

a)

b)

c)
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Figure 16. Regression plots for machining performances a) MRR, b) TWR, c) Ra

ted values. Besides, the non-hybrid DNN method is also 
used to predict the experimented outcomes and compared 
with our propped method. The optimal predicted value 
obtained from the hybrid DNN-DHO method for the 
input condition of 19 V, 20 g/l of EC and 30% DC are 
0.361 mg/min of MRR, 0.272 mg/min of TWR, and 2.511 
μm of Surface Roughness. The optimal predicted values 
using RSM are 0.362 mg/min of MRR, 0.269 mg/min of 
TWR, and 2.662 μm of Ra. When using the non-hybrid 

DNN, the predicted values for MRR, TWR, and SR are 
deviate more from the actual outcomes. 

Figure 16 represents the regression plot for machining 
process parameters. The training and validation of these 
parameters achieve the outcome pertinent to actual 
values. Compared to experimented results, the DNN-
-DHO prediction achieves closer results than non-hybrid 
DNN. The regression coeffi cient achieved for the MRR 
is 0.9965, TWR is 0.99742, and surface roughness is 
0.99483, respectively. Figure 17 represents the accuracy 

a)

b)

c)
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Figure 18. RMSE for hybrid and non-hybrid DNN

Figure 17. Accuracy of the proposed method and DNN

Table 7. Comparison of proposed DNN-DHO with existing methods

comparison of training and validation of the DNN and 
DNN-DHO prediction. The optimal accuracy is obtained 
in the proposed method of prediction. For DNN predic-
tion, the optimal training accuracy is 89%, and validation 
is 91%. For hybrid DNN-DHO the optimal accuracy for 
training is 91%, and validation is 95%. 

The error analysis reveals that the proposed prediction 
model is more favourable than the prediction behaviour 
of both RSM and DNN. This is because the non-hybrid 
neural network updates the random weights to forecast 
the machined outcomes. In the view of the hybrid DNN 
based DHO prediction model, the weights are initially 
optimized using DHO and then updated. It proves that 
the experimented and the predicted values are close and 
correlated with each other. The Root Mean Square Er-
ror (RMSE) analysis for the predicted outcomes of the 
machined workpiece is shown in Figure 18. The fi gure 
shows that the hybrid DNN-DHO promotes a lower 

error value than the DNN. From the overall machining 
performances, the error values obtained from Hybrid 
DNN-DHO are 0.018 to 0.024, and DNN is 0.047 to 
0.058. The results of this proposed work are compared 
with some existing works as given in table 7. The out-
comes mainly depend on the properties of the materials 
and the selected parameters. In ECM machining, tool 
wear rate analysis is very rarely found. Few works were 
investigated with the help of nano electrolytes. And 
several works explained the ECMM characteristics of 
stainless steel as well.

CONCLUSION

The ECMM is the most effective method to achieve 
better surface characteristics and is capable of machining 
hard materials. In this work, Electrochemical Micro-
machining has achieved to micro-drill the holes on die 
hardened steel. The test was conducted by varying six 
different combinations of electrolytic blends. The expe-
rimental model was designed in response to a surface 
methodology using box Behnken design (RSM-BBD). 
And then, the results were predicted and validated 
using the hybrid DNN-DHO technique. The experi-
mental analysis found the optimal electrolyte: stannic 
oxide and zinc oxide nanoparticles added NaCl. The 
obtained optimal experimental result was used to train 
the RSM and hybrid DNN-DHO models. The various 
observations noticed during ECMM optimization and 
prediction are as follows,

– The ANOVA table for MRR, TWR, and Ra conc-
ludes that the formed quadratic models are well fi tted 
with the experimented outcomes. Specifi cally, the input 
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voltage and electrolyte concentration are more effectively 
involved in enhancing the machining behaviour.

– The experimental design results in the optimal MRR 
of 0.359 mg/min and TWR of 0.27 mg/min for 25 g/l of 
electrolyte concentration, the voltage of 19 V and 30% 
of duty cycle.

– The ECMM produces a better surface with the 
surface roughness of 2.49 μm at the electrolytic con-
centration of 30 g/l, 18 V of voltage and 30% of duty 
cycle, respectively.

– The RSM predicts the optimum value with the 
regression coeffi cients of 0.9927, 0.9955, and 0.9933 for 
MRR, TWR and Surface roughness.

– The obtained result is comparatively analyzed with 
hybrid DNN-DHO prediction. The results proved that 
our proposed algorithm’s predicted results were closer 
to the experimental results. It also achieves a fi tness 
coeffi cient closer to unity, implying that the designed 
model is best suited for machining performance predic-
tion and validation.

– The proposed hybrid model starts to produce stable 
results after 100 iterations while training and validating. 
Moreover, the proposed hybrid DNN-DHO model 
achieved 94% overall accuracy with less than 1.5% error.

– The hybridization of the DHO algorithm with DNN 
signifi cantly improvised the prediction performance of 
DNN by reducing the RMSE. The obtained RMSE for 
the proposed DNN-DHO was between 0.018 and 0.024. 
In contrast, the RMSE of the conventional DNN model 
ranges between 0.047 and 0.058.

However, the optimization and prediction of ECMM 
were successfully achieved by the developed hybrid DNN 
model. The performance of the hybrid DNN model was 
less than 95%, and this can be improvised in our future 
studies by implementing some advanced and accurate 
optimization algorithms. Moreover, only the three output 
characteristics of MRR, Ra and TWR of ECMM with 
SnO2 and ZnO added electrolyte combinations were 
studied in this work for simplicity. In our future work, 
more output responses like kerf width, tapper angle, 
overcut etc., of ECMM with our proposed electrolyte may 
be investigated using advanced neural network models.
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