PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The selective depression effect of sodium hexametaphosphate on the separation of chlorite and specularite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation is the most known beneficiation method for the separation of complex and refractory iron ores. As a typical iron-containing silicates, it is difficult to separate chlorite from specularite, because of the similar surface physicochemical properties. In this study, the selective depression effect of sodium hexametaphosphate (SHMP) was conducted via the cationic micro-flotation. The surface adsorption mechanism between SHMP and the two mineral surface was explored through surface adsorption amount tests, Zeta-potential measurements, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses. The micro-flotation results indicated that SHMP could selectively depress around 90% of chlorite, while its effect on the floatability of specularite was negligible (<20% depressing). The surface adsorption amount tests, Zeta-potential measurements analysis demonstrated that SHMP selectively adsorb on chlorite surface while on the surface of specularite is feeble. The further surface adsorption analysis via FT-IR and XPS proved that SHMP selective adsorption occurred on the chlorite surface mainly by chemisorption mainly through the chelation reaction between O in the phosphate groups of SHMP molecular and metal ions on surface of chlorite.
Słowa kluczowe
Rocznik
Strony
art. no. 166495
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Safety and Health for Metal Mines, Ma’anshan 243071, China
  • Huawei National Engineering Research Center for Efficient Recycling of Metallic Mineral Resources Co., Ltd, Ma’anshan 243071, China
autor
  • State Key Laboratory of Safety and Health for Metal Mines, Ma’anshan 243071, China
  • Huawei National Engineering Research Center for Efficient Recycling of Metallic Mineral Resources Co., Ltd, Ma’anshan 243071, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
autor
  • State Key Laboratory of Safety and Health for Metal Mines, Ma’anshan 243071, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
Bibliografia
  • ZHANG, X., GU, X., HAN, Y., PARRA-ÁLVAREZ, N., CLAREMBOUX, V., KAWATRA, S.K., 2021. Flotation of iron ores: A review. Mineral processing and extractive metallurgy review, 42(3), 184-212.
  • LU, L., 2015. Iron ore: mineralogy, processing and environmental sustainability. Amsterdam: Elsevier, 1-6.
  • LI, Z., FU, Y., LI, Z., NAN, N., ZHU, Y., LI, Y., 2019. Froth flotation giant surfactants. Polymer, 162, 58-62.
  • MA, M., 2012. Froth flotation of iron ores. International Journal of Mining Engineering and Mineral Processing, 1(2), 56-61.
  • BHAGYALAXMI, K., HRUSHIKESH, S., SWAGAT, S. R., DAS, B., 2013. Investigations on different starches as depressants for iron ore flotation. Minerals Engineering, 49, 1-6.
  • BAI, S., DING, Z., FU, X., LI, C., LV, C., WEN, C., 2019. Investigations on soluble starch as the depressant of hematite during flotation separation of apatite. Physicochemical Problems of Mineral Processing, 55(1), 38-48.
  • VELOSO, C.H., FILIPPOV, L.O., FILIPPOVA, L.V., OUVRARD, S., ARAUJO, A.C., 2018. Investigation of the interaction mechanism of depressants in the reverse cationic flotation of complex iron ores. Minerals Engineering, 125, 133-139.
  • LI, M., LIU, J., GAO, X.G., HU, Y., TONG, X., ZHAO, F., YUAN, Q., 2019. Surface Properties and Floatability Comparison of Aegirite and Specularite by Density Functional Theory Study and Experiment. Minerals, 9(12), 782.
  • FAN, G., WANG, L., CAO, Y., LI, C., 2020. Collecting agent–mineral interactions in the reverse flotation of iron ore: a brief review. Minerals, 10(8), 681.
  • MEI, G., MAI, X., YU, Y., 2020. Study on the depressing property of mercaptoacetic acid in the flotation of aegirine. Metal Mine, (9), 18-20.
  • VELOSO, C.H., FILIPPOV, L.O., FILIPPOVA, L.V., OUVRARD, S., ARAUJO, A.C., 2018. Investigation of the interaction mechanism of depressants in the reverse cationic flotation of complex iron ores. Minerals Engineering, 125, 133-139.
  • POPERECHNIKOVA, O.Y., FILIPPOV, L.O., SHUMSKAYA, E.N., FILIPPOVA, I.V., 2017. Intensification of the reverse cationic flotation of hematite ores with optimization of process and hydrodynamic parameters of flotation cell. Journal of Physics: Conference Series, 879, 012016.
  • LI, M., LIU, J., HU, Y., GAO, X., YUAN, Q., ZHAO, F., 2020. Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation. Carbohydrate Polymers, 240, 116334.
  • TOHRY, A., DEHGHAN, R., ZAREI, M., CHELGANI, S.C., 2021. Mechanism of humic acid adsorption as a flotation separation depressant on the complex silicates and hematite. Minerals Engineering, 162, 106736.
  • LI, X., ZHANG, Q., WANG, L., LUO, Q., 2021. Effect mechanism of SHMP on flotation system of pentlandite and serpentine. Conservation and Utilization of Mineral Resource, 41(02), 52-57.
  • HU, X., ZHU, Y., LV, J., ZHENG, G., 2020. Effect of sodium hexametaphosphate on flotation kinetics of magnesite and dolomite separation. Nonferrous Metals Engineering, 10(09), 72-78.
  • WANG, J., YIN, W., SUN, Z., 2018. Effect and mechanism of co-depressant of calcite and sodium hexametaphosphate on scheelite flotation. The Chinese Journal of Nonferrous Metals, 28(08), 1645-1652.
  • ZHANG, G., FENG, Q., LU, Y., LIU, G., OU, L., 2001. Effect of sodium hexametaphosphate on flotation of bauxite. Journal of Central South University (Science and Technology), (02), 127-130.
  • CHEN, Y., ZHANG, G., SHI, Q., LIU, D., 2019. Effect of chlorite on the flotation of pyrrhotite and its implications for elimination by different methods. Separation Science and Technology, 54, 1411–1419.
  • QUAST, K., 2017. Literature review on the use of natural products in the flotation of iron oxide ores. Minerals Engineering, 108, 12–24.
  • ROHEM, P., DA F., ANTOUN S.R., SALLES L.L., MELLO M., 2019. Interaction forces between colloidal starch and quartz and hematite particles in mineral flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 79–85.
  • YANG, B., SUN, H, WANG, D., YIN, W., CAO, S., WANG, Y., ZHU, Z., JIANG, K., YAO, J., 2020. Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation. Separation and Purification Technology 250, 117278.
  • FENG, Q., ZHANG, Q., ZHANG, G., 2011. Inhibition mechanism of sodium hexametaphosphate on calcite, The Chinese Journal of Nonferrous Metals, 21(02), 436-441.
  • LI, Z., HAN, Y., LI, Y., GAO, P., 2017. Effect of serpentine and sodium hexametaphosphate on ascharite flotation. Transactions of nonferrous metals society of China, 27(8), 1841-1848.
  • KASOMO, R.M., LI, H., ZHENG, H., CHEN, Q., WEN, X., MWANGI, A.D., KIAMBAC, E., SONG, S., 2020. Depression of the selective separation of rutile from almandine by Sodium Hexametaphosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 593, 124631.
  • WEI, G., BO, F., JINXIU, P., ZHANG, W., ZHU, X., 2019. Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc. Journal of Materials Research and Technology, 8 (1), 697–702.
  • HABER, J., STOCH, J., UNGIER, L., 1976. X-ray photoelectron spectra of oxygen in oxides of Co, Ni, Fe and Zn. Electron Spectrosc Relat Phenom, 9(5), 459–67.
  • WANG, L., ZHOU, W., SONG, S., GAO, H., NIU, F., ZHANG, J., AI, G., 2021. Selective separation of hematite from quartz with sodium oleate collector and calcium lignosulphonate depressant. Journal of Molecular Liquids, 322: 114502.
  • HAN, W., ZHU, Y., GE, W., LIU, J., LI, Y., 2022. Curdlan as a new depressant of hematite for quartz-hematite reverse flotation separation. Minerals Engineering, 185, 107708.
  • WANG, L., SHEN, L., SUN, W., ZHANG, X., ZHANG, Y., WANG, Y., 2022. Selective flotation separation of smithsonite from dolomite by using sodium hexametaphosphate as a depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129621.
  • RUNPENG, L., SHUMING, W., JIAN, L., FENG, Q., 2022. Flotation separation of fine smithsonite from calcite using sodium hexametaphosphate as the depressant in the Na2S-Pb(II)-KIAX system. Separation and Purification Technology, 295, 129621.
  • LI, M., YANG, C., WU, Z., GAO, X., TONG, X., YU, X., LONG, H., 2022. Selective depression action of taurine in flotation separation of specularite and chlorite. International Journal of Mining Science and Technology, 32, 637-644
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ad88431-f746-49c4-aee6-9a215e0c4c71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.