Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In every boiler plant, including industrial boiler plants of thermal capacity above 2 MW, substantial heat gains are generated during the work of combustion units. As a result, the indoor air temperature raises in the room, which affects thermal comfort of workers operating such technological installations. Therefore, heat removal requires an effective mechanical ventilation system. A numerical analysis of the selected air parameters in a room equipped with combustion devices was undertaken using computational fluid dynamic (CFD) simulations in the DesignBuilder software. This was done for a combustion plant in the “Installation of Thermal Treatment of Sewage Sludge” building, located in the “Group Sewage Treatment Plant” complex of Lodz, Poland. The numerical analysis was based on experimental measurements and the results concerning the personnel work area were compared to the guidelines of the ISO international standard 7730:2005.
Wydawca
Czasopismo
Rocznik
Tom
Strony
51--61
Opis fizyczny
Bibliogr. 38 poz., il.
Twórcy
autor
- Lodz University of Technology, Department of Environmental Engineering and Building Construction Installations, Faculty of Architecture, Civil and Environmental Engineering, al. Politechniki 6, 90-924 Lodz, Poland
autor
- Lodz University of Technology, Department of Environmental Engineering and Building Construction Installations, Faculty of Architecture, Civil and Environmental Engineering, al. Politechniki 6, 90-924 Lodz, Poland
Bibliografia
- [1] A. Charkowska, Wymagania ogólne i podstawowe zasady projektowania wentylacji dla obiektów przemysłowych (General requirements and basic rules of ventilation system design in industrial buildings), Special supplement IB – Ventilation and air-conditioning, Inżynier Budownictwa (Civil Engineer) 10 (2013) 62-64.
- [2] R. Cichowicz, G. Wielgosiński, A. Targaszewska, Analysis of CO2 concentration distribution inside and outside small boiler plants, ECOL CHEM ENG S. 23 (1) (2016) 49-60, DOI: 10.1515/eces-2016-0003.
- [3] R. Cichowicz, G. Wielgosiński, Effect of meteorological conditions and building location on CO2 concentration in the university campus, ECOL CHEM ENG S. 22 (4) (2015) 513-525, DOI: 10.1515/eces-2015-0030.
- [4] J. Szymańska, Podstawy wentylacji przemysłowej (Basics of industrial ventilation), Magazyn Przemysłowy (Industrial Magazine) 2016.
- [5] D. Węgrzyn, Powietrze dla przemysłu (Air for industry), Magazyn Instalatora (Plumber Magazine) 12 (2012) 12-14.
- [6] R. Rota, Industrial Ventilation, Ref. Mod. in Chem., Mol. Sc. and Chem. Eng. (2015), DOI: 10.1016/B978-0-12-409547-2.11223-5.
- [7] A. Mabbett, Industrial ventilation and air pollution control, Metal Finishing 105 (10) (2007) 678-698, DOI: 10.1016/S0026-0576(07)80385-0.
- [8] D. Węgrzyn, Wentylacja przemysłowa (Industrial Ventilation), Magazyn Instalatora (Plumber Magazine) 4 (2012) 16-17.
- [9] B. Biegert, J. Railio, Terminology, in: H. Goodfellow, E. Tahti (Eds.), Industrial Ventilation. Design Guidebook, Academic Press, 2001, pp. 9-14.
- [10] I. Sudoł-Szopińska, A. Chojnacka, Określanie warunków komfortu termicznego w pomieszczeniach za pomocą wskaźników PMV i PPD (Determining thermal comfort conditions in rooms with the PMV and PPD indices), Bezpieczeństwo Pracy (Occupational Safety) 5 (2007) 19-23.
- [11] ISO 7730:2005 Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
- [12] G. Havenith, Heat balance when wearing protective clothing, ANN OCCUP HYG 43 (5) (1999) 289-296, DOI: 10.1016/S0003-4878(99)00051-4.
- [13] T. Fukazawa, G. Havenith, Differences in comfort perception in relation to local and whole body skin wittedness, Eur. J. Appl. Physiol. 106 (1) (2009) 15-24, DOI: 10.1007/s00421-009-0983-z.
- [14] ISO 7243:1989 Hot environments – Estimation of the heat stress on working man, based on the WGBT-index (wet bulb globe temperature).
- [15] N. M. Pinto, A. A. P. Xavier, K. Hatakeyama, Thermal comfort in industrial environment: conditions and parameters, Procedia Manufacturing 3 (2015) 4999 – 5006, DOI:10.1016/j.promfg.2015.07.662.
- [16] L. Lan, Z. Lian, Y.Liu, Investigation of gender difference in thermal comfort for Chinese people, Eur. J. Appl. Physiol. 102 (4) (2008) 471-480, DOI: 10.1007/s00421-007-0609-2.
- [17] D. Skrzyniowska, Parameters of indoor air in residential and non-residential buildings. Thermal Comfort, Technical Transactions. Environmental Engineering 4 (2012) 15-35.
- [18] A. Auliciems, S. V. Szokolay, Thermal comfort, PLEA in association with Dept. of Architecture, University of Queensland, 2007.
- [19] J. B. Joshi, Computational Fluid Dynamics for Designing Process Equipment: Expectations, Current Status and Path Forward, Ind. Eng. Chem. Res. 42 (6) (2003) 115-1128, DOI: 10.1021/ie0206608.
- [20] S. Yang, X. Li, C. Yang, B. Ma, Z. Mao, Computational Fluid Dynamics Simulation and Experimental Measurement of Gas and Solid Holdup Distribution in a Gas-Liquid-Solid Stirred Reactor, Ind. Eng. Chem. Res. 55 (12) (2016) 3276-3286, DOI: 10.1021/acs.iecr.5b03163.
- [21] K. S. Nikas, N. Nikolopoulos, A. Nikolopoulos, Numerical study of a naturally cross-ventilated building, Energy and Buildings 42 (4) (2010) 422-434, DOI: 10.1016/j.enbuild.2009.10.010.
- [22] Y. Ji, M.J. Cook, V. Hanby, CFD modelling of natural displacement ventilation in an enclosure connected to an atrium, Building and Environment, 42 (3) (2007) 1158-1172, DOI: 10.1016/j.buildenv.2005.11.002.
- [23] http://www.openfoam.com
- [24] http://www.ansys.com/Products/Fluids/ANSYS-Fluent
- [25] http://www.thunderheadeng.com/pyrosim
- [26] https://www.designbuilder.co.uk
- [27] A. Bohojło, M. Kołodziejczyk, Computational analysis of local thermal comfort factors in a habitatle room, Acta mechanica et automatic 3 (1) (2010) 14-23.
- [28] R. Cichowicz, A. Lewandowska, The analysis of selected parameters of thermal comfort in the classrooms using CFD techniques, WSN 73 (1) (2017) 72-79.
- [29] M. Manickam, M. P. Schwarz, J. Perry, CFD modeling of waste heat recovery boiler, Applied Mathematical Modelling 22 (10) (1998) 823-840, DOI: 10.1016/S0307-904X(98)10020-3.
- [30] H. Chen, Z. Liang, Damper opening optimization and performance of a co-firing boiler in a 300 MWe plant, Applied Thermal Engineering 123 (2017), DOI: 10.1016/j.applthermaleng.2017.05.085.
- [31] R. Rota, L. Canossa, G. Nano, Ventilation design of industrial premises through CFD modeling, CAN J CHEM ENG 79 (1) (2001), DOI: 10.1002/cjce.5450790112.
- [32] Technical CFD Documentation. DesignBuilder Software, http://www.designbuilder.co.uk/downloads/ CFDTechnical.pdf
- [33] T. Hobler, Heat transfer and heat exchangers (Ruch ciepła i wymienniki), Państwowe Wydawnictwo Techniczne (National Technical Publishing), Warsaw, 1959.
- [34] Microclimatic probes. User’s manual, LSI LASTEM, http://www.lsi-lastem.it/WebDocument/ INSTUM_00499_it-en.pdf
- [35] Y. J. P. Lin, J. Y. Wu, A study on density stratification by mechanical extraction displacement ventilation, INT J HEAT MASS TRAN 110 (2017) 447-459, DOI: 10.1016/j.ijheatmasstransfer.2017.03.053.
- [36] A. C. Caputo, P. M. Pelagagge, Upgrading mixed ventilation systems in industrial conditioning, Applied Thermal Engineering 29 (14-15) (2009) 3204-3211, DOI: 10.1016/j.applthermaleng.2009.04.025.
- [37] S. Mierzwiński, Wentylacja Przemysłowa. Cz. I (Industrial Ventilation. Vol. I), Silesian University of Technology, Gliwice, 1979.
- [38] B. Biegert, J. Railio, Industrial Air Technology - Description, in: Goodfellow H., Tahti E. (Eds.), Industrial Ventilation. Design Guidebook, Academic Press, 2001, pp. 1-7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ad58f14-ce83-46b9-a136-f5519ce09461