PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extreme Rainfall-Runoff Events Modeling Using HEC-HMS Model for Oued El Hachem Watershed, Northern Algeria

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flood forecasting has become necessary for dam management during extreme hydrological events. The lack of streamflow data in ungauged watersheds of arid and semi-arid regions makes the assessment of water resources difficult. In this paper, the Hydrologic Modeling System developed by the Hydrologic Engineering Center (HEC-HMS) was applied to the Oued El Hachem watershed. Calibration and validation of the model have been performed, taking into account the lag time and the curve number CN that is expressed as a function of soil group, land use and antecedent runoff condition. The model was evaluated on the basis of the coefficient of determination, the Nash Sutcliffe Efficiency (NSE), and the percentage differences between peak and volume. Performance indices of calibration showed a good agreements between observed and computed flows. The validation of the model has given satisfactory results. The calibrated model can be used to manage the dam of Boukerdane during extreme rainfall events by forecasting the induced hydrographs from which adequate procedures will be operated in order to ensure the safety of the dam against possible overtopping.
Rocznik
Strony
45--57
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of Protection and Preservation of Water Resources, University of Blida 1, Faculty of Technology, Department of Water Sciences and Environment, 9000 Blida Algeria
Bibliografia
  • ANBT (Agence Nationale des Barrages et Transferts) [National Agency of Dams and Transfers] (2021) Operation report of Boukerdane dam, ANBT.
  • BNEDER (Bureau national d’´etudes pour le developpement rural) [National studies office for rural development] (2011) Land cover map of Tipaza province.
  • Cheng C. T., Ou C., Chau K. (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration, J. Hydrol. 268, 72–86.
  • Demlie G. Z., Assefa M. M. (2018) Applicability of a Spatially Semi-Distributed Hydrological Model for Watershed Scale Runoff Estimation in Northwest Ethiopia, Water, 10,923, July 2018, DOI: 10.3390/w10070923.
  • Giandotti M. (1934) Previsione delle piene e delle magre dei corsi d’acqua [Forecast of floods and Lean waters], Memorie e studi idrografici, 8 (2), 107–117.
  • Gopi G., Rema K. P. (2021) Calibration and Validation of HEC-HMS Model for Chalakudy River Basin, International Journal of Environment and Climate Change, 11 (5), 91–104, 2021; Article no.IJECC.67689 ISSN: 2581-8627, DOI: 10.9734/IJECC/2021/v11i530410.
  • Halwatura D., Najim M. M. (2013) Application of the HEC-HMS model for runoff simulation in a tropical catchment, Environ. Model. Softw., 46, 155–162.
  • Hamdan A. N. A., Almuktar S., Scholz M. (2021) Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River Catchment, Northern Iraq, Hydrology, 8, 58. https://doi.org/10.3390/hydrology8020058.
  • Hussain F., Wu R.-S., Yu K.-C. (2021) Application of Physically Based Semi-Distributed Hec-Hms Model for Flow Simulation in Tributary Catchments of Kaohsiung Area Taiwan, Journal of Marine Science and Technology, 29 (1), Article 4, DOI: 10.51400/2709-6998.1003.
  • HEC (Hydrologic Engineering Center) (2000) HEC-HMS Hydrologic Modeling system. Technical Reference Manual, Davis, CA: US Army Corps of Engineers. Available from: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMSTechnical%20Reference%20Manual(CPD-74B).pdf.
  • HEC (Hydrologic Engineering Center) (2013) HEC-HMS Hydrologic Modeling System, User’s Manual. Version 4.0, Davis, CA: US Army Corps of Engineers. Available from: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMSUsersManual4.0.pdf.
  • Miller W. A., Cunge J. A. (1975) Simplified equations of unsteady flow, [in:] K. Mahmood and V. Yevjevich, eds., Unsteady flow in open channels, Vol. I, Water resources publications, Ft. Collin, CO.
  • Moriasi D. N., Arnold J. G., Van Liew M. W., Bingner R. L., Harmel R. D., Veith T. L. (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, American Society of Agricultural and Biological Engineers, 50 (3), 885–900.
  • MotovilovY. G., Gottschalk L., Engeland K., Belokurov A. (1999) ECOMAG: Regional model of hydrological cycle. Application to the NOPEX region. Department of Geophysics,University of Oslo P.O. Box 1022 Blindern 0315 OSLO, NORWAY. Institute Report Series No.: 105 ISBN 82-91885-04-4. May.
  • Nash J. E., Sutcliffe J. (1970) River flow forecasting through conceptual model, Part 1: A discussion of principles, Journal of Hydrology, 10 (3), 282–290.
  • Najim M. M., Babelb M. S., Loofb R. (2006) AGNPS model assessment for a mixed forested watershed in Thailand, Sci. Asia, 32, 53–61.
  • Zhuohang X., Ke S., Chenchen W., Lu W., Lei Y. (2019) Applicability of Hydrological Models for Flash Flood Simulation in Small Catchments of Hilly Area in China, https://doi.org/10.1515/geo-2019-0089.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ad45d9f-b819-4335-b755-0a8ae601cd51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.