Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effect of lizardite on talc flotation when using carboxymethyl cellulose (CMC) as a depressant was studied by micro-flotation experiments and adsorption measurements, zeta-potential measurements, magnesium ion dissolution analysis, and solution chemistry calculation. The results for the micro-flotation experiments showed that the addition of lizardite further decreased the floatability of talc at pH 8.5 when using CMC as the depressant. The mechanism was that magnesium ions dissolved from lizardite lattice, then formed hydrolyzed species of magnesium cations and interacted with talc surfaces, which promoted CMC adsorption, and thus decreasing talc floatability.
Słowa kluczowe
Rocznik
Tom
Strony
702--709
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu, 610041 Sichuan, China
autor
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
autor
- Department of Mining and Minerals Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
autor
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
autor
- School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
Bibliografia
- CHEN, Y., ZHANG, G., SHI, Q., YANG, S., LIU, D., 2020. Utilization of tetrasodium iminodisuccinate to eliminate the adverse effect of serpentine on the flotation of pyrite. Miner. Eng., 150, 106235.
- CUBA-CHIEM, L.T., HUYNH, L., RALSTON, J., BEATTIE, D.A., 2008. In situ particle film ATF-FTIR studies of CMC adsorption on talc: The effect of ionic strength and multivalent metal ions. Miner. Eng., 21(12-14), 1013-1019.
- FENG, B., LU, YI-PING., FENG, Q.M., DING, P., LUO, N., 2013. Mechanisms of surface charge development of serpentine mineral. Trans. Nonferrous Met. Soc. China, 23(4), 1123-1128.
- FENG, B., LU, Y., FENG, Q., ZHANG, M., GU, Y., 2012. Talc–serpentine interactions and implications for talc depression. Miner. Eng., 32(4), 68-73.
- FENG, B., PENG, J., ZHANG, W., NING, X., GUO, Y., ZHANG, W., 2018. Use of locust bean gum in flotation separation of chalcopyrite and talc. Miner. Eng., 122, 79–83.
- FUERSTENAU, M.C., LOPEZ-VALDIVIESO, A., FUERSTENAU, D.W., 1988. Role of hydrolyzed cations in the natural hydrophobicity of talc. Int. J. Miner. Process., 23(3–4), 161-170.
- HUANG, Z., CHENG, C., LI, K., ZHANG, S.Y., ZHOU, J.R., LUO, W.H., LIU, Z.W., QIN, W.W., WANG, H.L., HU, Y.J., HE, G.C., YU, X.Y., QIU, T.S., FU, W., 2020. Reverse flotation separation of quartz from phosphorite ore at low temperatures by using an emerging Gemini surfactant as the collector. Sep. Purif. Technol., 246: 116923.
- HUANG, Z., CHENG, C., LIU, Z.W., ZENG, H., FENG, B., ZHONG, H., LUO W.H., HU, Y., GUO, Z., HE, G.C., FU, W., 2019. Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer, J. Clean. Prod., 221, 108-112.
- JIN, S., SHI, Q., FENG, Q.M., ZHANG, G.F., CHANG, Z.Y., 2018a. The role of calcium and carbonate ions in the separation of pyrite and talc. Miner. Eng., 119, 205-211.
- JIN, S., SHI, Q., LI, Q., OU, L., OUYANG, K., 2018b. Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose onto talc surface: flotation, adsorption and AFM imaging study. Powder Technol., 33, 155-161.
- KHRAISHEH, M., HOLLAND, C., CREANY, C., HARRIS, P., PAROLIS, L., 2005. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. Int. J. Miner. Process., 75(3–4), 197-206.
- LIU, C., AI, G.H., SONG, S.S., 2018. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite. Powder Technol., 336, 527–532.
- LIU, C., ZHANG, W.C., SONG, S.S., LI, H.Q., 2019b. Effects of lizardite on pentlandite flotation at different pH: Implications for the role of particle-particle interaction. Miner. Eng., 132, 8-13.
- LIU, C., ZHU, G.L., SONG, S.S., LI, H.Q., 2019b. Flotation separation of smithsonite from quartz using calcium lignosulphonate as a depressant and sodium oleate as a collector. Miner. Eng., 131, 385-39.
- LIU, C., ZHANG, W.C., SONG, S.S., LI, H.Q., 2019c. A novel method to improve carboxymethyl cellulose performance in the flotation of talc. Miner. Eng. 131, 23–27.
- LIU, W., ZHANG, S., WANG, W., ZHANG, J., YAN, W., DENG, J., 2015. The effects of Ca(II) and Mg(II) ions on the flotation of spodumene using NaOL. Miner. Eng., 79, 40-46.
- MALHAMMAR, G., 1990. Determination of some surface properties of talc. Colloids Surf. A Physicochem. Eng. Asp., 44, 61-69.
- PAROLIS, L.A.S., MERWE, R.V.D., GROENMEYER, G.V., HARRIS, P.J., 2008. The influence of metal cations on the behaviour of carboxymethyl celluloses as talc depressants. Colloids Surf. A Physicochem. Eng. Asp., 317(1–3), 109-115.
- SHORTRIDGE, P.G., HARRIS, P.J., BRADSHAW, D.J., KOOPAL, L.K., 2000. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc. Int. J. Miner. Process., 59(3), 215-224.
- SOMASUNDARAN, P., WANG, D.Z., 2006. Solution Chemistry: Minerals and Reagents. Elsevier.
- WANG, X., LIU, R., MA, L., QIN, W., JIAO, F., 2016. Depression mechanism of the zinc sulfate and sodium carbonate combined inhibitor on talc. Colloids Surf. A Physicochem. Eng. Asp., 501, 92-97.
- YANG, S., XIE, B., LU, Y., LI, C., 2018. Role of magnesium-bearing silicates in the flotation of pyrite in the presence of serpentine slimes. Powder Technol., 322, 1-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ad2386c-47e9-4642-b5b3-f1d76dd81d34