PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Discrete phase model of blood flow in a roughness microchannel simulating the formation of pseudointima

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the present study was the development of discrete phase model to simulate the phenomenon of backfilling a morphologically complex surface by red blood cells (RBCs) in a flow microchannel and to anticipate the conditions of forming a pseudointima. The objective of the experimental studies that inspired the development of the simulation was to create a surface that stimulates the formation of the pseudointima layer. Methods: The finite volume method (FVM) and discrete particle method (DPM) were applied to develop the target model. In addition, a mixture model and a roughness model of bottom layer were tested in the present study to show their influence on simulation the phenomenon of backfilling a morphologically complex surface by RBCs in a flow microchannel. Results: Numerical models were developed including: a) FVM models to compare the effect of applying boundary conditions with/without roughness and cubes, as well as the analysis of their influence on blood velocity and shear stress; b) mixture models to compare the effect of applying different boundary conditions and cubes on computed results; c) DPM models to compare the effect of applying and not applying roughness as a boundary condition; d) DPM models with a morphologically complex surface and RBCs collisions to present RBCs concentration, velocity and time distributions during flow in a channel. Conclusions: The analysis carried out for the developed numerical models indicates that DPM model with cubes computes the best results. It also shows the backfilling of a morphologically complex surface of the bottom microchannel with RBCs.
Rocznik
Strony
132--144
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • AGH University Science and Technology, Kraków, Poland.
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland.
  • Foundation for Cardiac Surgery Development, Institute of Heart Prostheses, Zabrze, Poland. 3 Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland.
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland.
Bibliografia
  • [1] ADAMCZUK K., WOLAŃSKI W., KASPERA W., Analiza przepływu krwi w tętnicach mózgowych, Aktualne Problemy Biomechaniki, 2016, 11, 9–14.
  • [2] ALIMOHAMADI H., SMITH A., NOWAK R., FOWLER V., RANGAMANI P., Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation, PLOS Comput. Biol., 2020, 16, 1–26.
  • [3] BERIS A.N., HORNER J.S., JARIWALA S., ARMSTRONG M.J., WAGNER N.J., Recent advances in blood rheology: A review, Soft Condensed Matter, 2021, 1–22.
  • [4] BLAKE A.S.T., PETLEY G.W., DEAKIN C.D., Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits, Brit. J. Anaesth., 2000, 84, 28–32.
  • [5] BOWEN R.M., Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 1980, 18, 1129–1148.
  • [6] BURADI A., MAHALINGAM A., Effect of stenosis severity on wall shear stress based hemodynamic descriptors using multiphase mixture theory, J. Appl. Fluid Mech., 2018, 11, 1497–1509.
  • [7] CAI S., LI H., ZHENG F., KONG F., DAO M., KARNIADAKIS G.E., SURESH S., Artificial intelligence velocimetry and microaneurysm- on-a-chip for three-dimensional analysis of blood flow in physiology and disease, PNAS, 2021, 118, e2100697118.
  • [8] CAI Q., LIAO W., XUE F., WANG X., ZHOU W., LI Y., ZENG W., Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft, Bioact. Mater, 2021, 6, 2557–2568.
  • [9] CAPACCIO A., CASERTA S., GUIDO S., RUSCIANO G., SASSO A., Dissolution of a surfactant-water lamellar phase investigated by combining time-lapse polarized light microscopy and confocal Raman spectroscopy, J. Colloid. Interf. Sci., 2020, 561, 136–146.
  • [10] CEBECI T., BRADSHAW P., Momentum transfer in boundary layers, Hemisphere Publishing Corp., New York, 1977.
  • [11] DIEZ-SILVA M., DAO M., HAN J., LIM C.-T., SURESH S., Shape and biomechanical characteristics of human red blood cells in health and disease, MRS Bull, 2010, 35, 382–388.
  • [12] EL-ARAGI G.M., Effect of electrohydraulic discharge on viscosity of human blood, Phys. Res. Int., 2013, ID 203708.
  • [13] ERDEMIR A., GUESS T.M., HALLORAN J., TADEPALLI S.C., MORRISON T.M., Considerations for reporting finite element analysis studies in biomechanics, J. Biomech., 2012, 45, 625–633.
  • [14] FENG R., XENOS M., GIRDHAR M., KANG W., DAVENPORT J.W., DENG Y., BLUESTEIN D., Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD, Biomech. Model Mechanobiol., 2012, 11, 119–129.
  • [15] FLORMANN D.A.D., Physical characterization of red blood cell aggregation, Biological Physics, Universität des Saarlandes, 2017.
  • [16] FRASER K.H., ZHANG T., TASKIN M.E., GRIFFITH B.P., WU Z.J., A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index, J. Biomech. Eng., 2012, 134, 0810021.
  • [17] HAYASE T., SHIRAI A., SUGIYAMA H., HAMAYA T., Measurement of frictional characteristics of red blood cells moving on a plate in plasma due to inclined centrifugal force, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68, 3386–3391.
  • [18] HIMBERT S., ALSOP R.J., ROSE M., HERTZ L., DHALIWAL A., MORAN-MIRABAL J.M., VERSCHOOR C.P., BOWDISH D.M.E., KAESTNER L., WAGNER C., RHEINSTÄDTER M.C., The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes, Sci. Rep., 2017, 7, 39661.
  • [19] HORNER J.S., ARMSTRONG M.J., WAGNER N.J., BERIS A.N., Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear, J. Rheol., 2018, 62, 577–591.
  • [20] HUSSMANN B., PFITZNER M., ESCH T., FRANK T., A stochastic particle-particle collision model for dense gas-particle flows implemented in the Lagrangian solver of ANSYS CFX and its validation, 6th International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007, 1–16.
  • [21] JAMES M.E., PAPAVASSILIOU D.V., O’REAR E.A., Use of computational fluid dynamics to analyze blood flow, hemolysis and sublethal damage to red blood cells in a bileaflet artificial heart valve, Fluids, 2019, 4, 1–19.
  • [22] JARIWALA S., HORNER J.S., WAGNER N.J., BERIS A.N., Application of population balance-based thixotropic model to human blood, J. Non-Newton Fluid, 2020, 281, 104294.
  • [23] JØRGENSEN L.H., MØLLER V.S., REVSHOLM J., Plasma viscosity: Evaluation of a new measuring method using microfluidic chip technology (microViscTM) for clinical use and determination of a new reference range, Ann. Clin. Biochem., 2020, 57, 249–252.
  • [24] JUNG J., LYCZKOWSKI R.W., PANCHAL CH.B., HASSANEIN A., Multiphase hemodynamic simulation of pulsatile flow in a coronary artery, J. Biomech., 2006, 39, 2064–2073.
  • [25] KARAKI W., RAHUL, LOPEZ C.A., BORCA-TASCIUC D.A., DE S., A continuum thermomechanical model of in vivo electrosurgical heating of hydrated soft biological tissues, Int. J. Heat Mass Tran., 2018, 127, 961–974.
  • [26] KHANJANPOUR M.H., JAVADI A.A., Experimental and CFD analysis of impact of surface roughness on hydrodynamic performance of a darrieus hydro (DH) turbine, Energies, 2020, 13, 928.
  • [27] KIM J., ANTAKI J.F., MASSOUDI M., Computational study of blood flow in microchannels, J. Comput. Appl. Math., 2016, 292, 174–187.
  • [28] KOPERNIK M., TOKARCZYK P., Development of multi-phase models of blood flow for medium-sized vessels with stenosis, Acta Bioeng. Biomech., 2019, 21, 63–70.
  • [29] KURTYKA P., WALKE W., KACZMAREK M., Fluid flow analysis using finite element method, determining the effects of the implantable mechanical heart valves on aortic blood flow, Adv. Intell. Syst., 2016, 472, 255–266.
  • [30] LAIN S., ERNST M., SOMMERFELD M., Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence, Appl. Sci., 2020, 10, 9095.
  • [31] LEE B.-K., XUE S., NAM J., LIM H., SHIN S., Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models, Korea – Aust. Rheol. J., 2011, 23, 1–6.
  • [32] LEE J., KIM I.G., OH Y.M., PARK C.-H., KIM C.S., Preliminary study for measurement of shear stress and hemocompatibility using commercialized lab on a chip, J. Nanoscie. Nanotechno., 2018, 18, 1123–1126.
  • [33] LIMA R., ISHIKAWA T., IMAI Y., YAMAGUCHI T., Blood flow behavior in microchannels: past, current and future trends, Single and two-phase flows on chemical and biomedical engineering, Dias R., Martins A.A., Lima R., Mata T.M. (Eds.), Bentham Science, 2012, 513–547.
  • [34] LIU H., LAN L., ABRIGO J., IP H.L., SOO Y., ZHENG D., WONG K.S., WANG D., SHI L., LEUNG T.W., LENG X., Comparison of newtonian and non-newtonian fluid models in blood flow simulation in patients with intracranial arterial stenosis, Front. Physiol., 2021, https://doi.org/10.3389/fphys.2021.718540
  • [35] LOVE A.I.J., GIDDINGS D., POWER H., Gas-particle flow modeling: beyond the dilute limit, Procedia Engineer., 2015, 102, 1426–1435.
  • [36] MAHDAVIMANESH M., NOGHREHABADI A.R., BEHBAHANINEJAD M., AHMADI G., DEHGHANIAN M., Lagrangian particle tracking: model development, Life Sci. J., 2013, 10, 34–41.
  • [37] MITCHELL D., HONNERY D., SORIA J., Particle relaxation and its influence on the particle image velocimetry cross-correlation function, Exp. Fluids, 2011, 51, 933.
  • [38] MENCONI M.J., POCKWINSE S., OWEN T.A., DASSE K.A., STEIN G.S., LIAN J.B., Properties of blood-contacting surfaces of clinically implanted cardiac assist devices: gene expression, matrix composition, and ultrastructural characterization of cellular linings, J. Cell. Biochem., 1995, 57, 557–573.
  • [39] MENTER F., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J, 2002, 40, 254-266.
  • [40] MORSI S.A., ALEXANDER A.J., An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech., 1972, 55, 193–208.
  • [41] MURALI C., NITHIARASU P., Red blood cell (RBC) aggregation and its influence on non-Newtonian nature of blood in microvasculature, J. Model Mech. Mat., 2017, 1, 20160157.
  • [42] NANDA S.P., BASU MALLIK B., A non-newtonian two-phase fluid model for blood flow through arteries under stenotic condition, Int. J. Pharm. Bio. Sci., 2012, 2, 237–247.
  • [43] PATTANAPOL W., WAKES S.J., HILTON M.J., DICKINSON K.J., Modeling of surface roughness for flow over a complex vegetated surface, Int. J. Math. Phys. Eng. Sci., 2008, 2, 18–26.
  • [44] PICART C., PIAU J.-M., GALLIARD H., CARPENTIER P., Human blood shear yield stress and its hematocrit dependence, J. Rheol., 1998, 42, 1–12.
  • [45] PONDER E., The specific heat and the heat of compression of human red cells, sickled red cells, and paracrystalline rat red cells, J. Gen. Physiol., 1955, 38, 575–580.
  • [46] PRASHANTHA B., ANISH S., Discrete-phase modelling of an asymmetric stenosis artery under different Womersley numbers, Ara. J. Sci. Eng., 2019, 44, 1001–1015.
  • [47] RAFFI S., OZ M.C., SELDOMRIDGE J.A., FERRIS B., ASCH A.S., NACHMEN R.L., SHAPIRO F., ROSE E.A., LEVIN H.R., Characterisation of hematopoetic cells arising on the textured surface on left ventriculat assist devices, Ann. Thorac. Surg., 1995, 60, 1627–1632.
  • [48] ROSENTRATER K.A., FLORES R.A., Physical and rheological properties of slaughterhouse swine blood and blood components, T ASAE, 1997, 40, 683–689.
  • [49] SOUSA P.C., PINHO F.T., ALVES M.A., OLIVEIRA M.S.N., A review of hemorheology: Measuring techniques and recent advances, Korea – Aust. Rheol. J., 2016, 28, 1–22.
  • [50] SOMMERFELD M., HUBER N., Experimental analysis and modelling of particle-wall collisions, Int. J. Multiphas. Flow, 1999, 25, 1457–1489.
  • [51] THYAGARAJAN B., KUMAR M.P., SIKACHI R.R., AGRAWAL A., Endocarditis in left ventricular assist device, Intractable Rare Dis. Res., 2016, 5, 177–184.
  • [52] VAIDYA N., BARAGONA M., LAVEZZO V., MAESSEN R., VEROY K., Simulation study of the cooling effect of blood vessels and blood coagulation in hepatic radiofrequency ablation, Int. J. Hyperther., 2021, 38, 95–104.
  • [53] YU Z., TAN J., WANG S., Enhanced discrete phase model for multiphase flow simulation of blood flow with high shear stress, Sci. Prog., 2021, 104, 1–21.
  • [54] ZAHARI N.M., ZAWAWI M.H., SIDEK L.M., MOHAMAD D., ITAM Z., RAMLI M.Z., SYAMSIR A., ABAS A., RASHID M., Introduction of discrete phase model (DPM) in fluid flow: a review, AIP Conf. Proc., 2030, 2018, 020234-1-6.
  • [55] ZILLA P., DEUTSCH M., BEZUIDENHOUT D., DAVIES N.H., PENNEL T., Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering, Front Cardiovasc. Med., 2020, 7, 1–159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7aca562b-279e-491e-9162-8c43d6120988
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.