PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of dual stator winding line start permanent magnet synchronous motor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza metodą elementów skończonych podwójnego uzwojenia stojana silnika synchronicznego z magnesami trwałymi
Języki publikacji
EN
Abstrakty
EN
This paper presents the analysis of dual stator winding line-start permanent magnet synchronous motor (PMSM) developed using finite element analysis (FEA) software suitable for comparison to the conventional line-start PMSM. A three-phase, 4 poles, 36 slots double layer interior permanent magnet (IPM) motor was characterised and its winding structure reconfigured into the dual stator winding with the same capacity and power rating as the conventional motor. The starting, synchronisation capability and the developed torque were compared. The results showed that the DSWPMSM synchronised at 0.20s and operated on a steady speed of 1500rpm.
PL
W artykule przedstawiono analizę silnika synchronicznego z magnesami trwałymi (PMSM) z podwójnym uzwojeniem uzwojenia, opracowanego przy użyciu oprogramowania do analizy elementów skończonych (FEA), odpowiednią do porównania z konwencjonalnym PMSM o rozruchu liniowym. Scharakteryzowano trójfazowy, 4 biegunowy, 36 żłobkowy dwuwarstwowy silnik z wewnętrznym magnesem trwałym (IPM) i przekonfigurowano jego strukturę uzwojenia na uzwojenie z podwójnym stojanem o tej samej pojemności i mocy znamionowej, co silnik konwencjonalny. Porównano zdolność rozruchową, synchronizacyjną i opracowany moment obrotowy. Wyniki pokazały, że DSWPMSM synchronizował się w 0,20 s i działał ze stałą prędkością 1500 obr./min.
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 21 poz. rys., tab.
Twórcy
  • Dept. of Electrical & Electronics Engineering, Federal University of Technology, Minna, Nigeria
  • Dept. of Electrical Engineering, University of Nigeria, Nsukka, Nigeria
  • Dept. of Electrical Engineering, University of Nigeria, Nsukka, Nigeria
  • Dept. of Electrical Engineering, University of Nigeria, Nsukka, Nigeria
Bibliografia
  • [1] L. Li, J. Zhang, C. Zhang, and J. Yu, “Research on Electromagnetic and Thermal Issue of High-Efficiency and High-Power-Density Outer-Rotor Motor,” IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, doi: 10.1109/TASC.2016.2542192.
  • [2] R. T. Ugale and B. N. Chaudhari, “Rotor Configurations for Improved Starting and Synchronous Performance of Line Start Permanent Magnet Synchronous Motor,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 138–148, 2017, doi: 10.1109/TIE.2016.2606587.
  • [3] Aníbal T. de Almeida ; Fernando J. T. E. Ferreira ; Ge Baoming, “Beyond induction motors — Technology trends to move up efficiency,” in 49th IEEE/IAS Industrial & Commercial Power Systems Technical Conference, doi: 10.1109/ICPS.2013.6547330.
  • [4] Milad Niaz Azari; Mojtaba Mirsalim, “Performance Analysis of a Line-start Permanent Magnet Motor with Slots on Solid Rotor Using Finite-element Method,” Electr. Power Components Syst., vol. 41, pp. 1159–1172, 2013, doi:10.1080/15325008.2013.809819.
  • [5] M. F. Barcaro M, Bianchi N, “Analysis and tests of a dual three phase 12-slot 10-pole permanent-magnet motor,” IEEE Trans. Inductry Appl., vol. 46, no. 6, pp. 2355–2362, 2010.
  • [6] R. Bojoi ; A. Cavagnino ; S. A. Odhano ; A. Tenconi ; S. Vaschetto, “Experimental fault assessment on multiphase PM generators with fractional-slot concentrated windings,” in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, doi: 10.1109/IECON.2015.7392875.
  • [7] Mohamed Arbi Khlifi, “Advances and Steady-State Development of Dual Stator-Winding Induction Machine,” IETE J. Res., 2020, doi: 10.1080/03772063.2020.1733443.
  • [8] P. Junkyu, B. ; Claudio, B. ; Alberto, D. ; Matteo, and N.Bianchi, “Experiment-Based Performance Analysis for Dual Three-Phase Synchronous Reluctance Motor According to Different Winding Configurations,” in 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), doi: 10.1109/SPEEDAM48782.2020.9161887.
  • [9] M. Ayaz Khoshhava ; Hossein Abootorabi ; G. R. Arab Markadeh, “Iron Loss Modeling in Dual Stator Winding Induction Machines with Unequal Pole Pairs and Squirrel Cage Rotor,” IEEE Trans. Ind. Electron., pp. 1–1, doi: 10.1109/TIE.2020.2977545,.
  • [10]D. D. G. . B. Anagha Soman, Dr. Rajesh Holmukhe, “Multispeed Operation and Testing Of Dual Stator Winding Induction Machine,” Int. J. Sci. Technol. Res., vol. 9, no. 1.
  • [11] R. Ç. Ahmet GÜNDOĞDU, “Performance Analysis of Open Loop V/f Control Technique for Six-Phase Induction Motor Fed By A Multiphase Inverter,” Turkish J. Sci. Technol., vol. 15, no. 2, pp. 111–125, 2020.
  • [12] L. U. Anih and E. S. Obe, “Performance analysis of a composite dual-winding reluctance machine,” Energy Convers. Manag., vol. 50, pp. 3056–3062, 2009.
  • [13] E. S. Obe, “Steady-state performance of a line-start synchronous reluctance motor with capacitive assistance,” Electr. Power Syst. Res., vol. 80, no. 10, pp. 1240–1246, Oct. 2010, doi: 10.1016/j.epsr.2010.04.004.
  • [14]L. U. Anih, E. S. Obe, and S. E. Abonyi, “Modelling and performance of a hybrid synchronous reluctance machine with adjustable X d / X q ratio,” IET Electr. Power Appl., pp. 171–182, 2015, doi: 10.1049/iet-epa.2014.0149.
  • [15]Gurakuq Dajaku, “Advanced multi phase fractional slot concentrated windings: characteristics and potentials,” Electr. Eng. Springer, 2020, doi: 10.1007/s00202-020-01088-2.
  • [16]O. J. Tola, E. S. Obe, and L. U. Anih, “Modeling and analysis of dual stator windings permanent magnet synchronous motor,” in IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), 2017, pp. 861–871, doi: 10.1109/NIGERCON.2017.8281954.
  • [17]L. Li, N.; Zhu, J.; Lin, M.; Yang, G.; Kong, Y.; Hau, “Analysis of Axial Field Flux-Switching Memory Machines Based on 3-D Magnetic Equivalent Circuit Network Considering Magnetic Hysteresis,” IEEE Trans. Magn., vol. 55, no. 7203104, 2019.
  • [18]K.-S. Lee, J.-J.; Lee, J.; Kim, “Design of a WFSM for an Electric Vehicle Based on a Nonlinear Magnetic Equivalent Circuit,” IEEE Trans. Appl. Supercond., vol. 28, no. 5206304, 2018.
  • [19]J.-H. Lee, B.-H.; Hong, J.-P.; Lee, “Optimum Design Criteria for Maximum Torque and Efficiency of a Line-Start Permanent Magnet Motor Using Response Surface Methodology and Finite Element Method.,” IEEE Trans. Magn., vol. 48, pp. 863–866, 2012.
  • [20]K. N. & S. Vimalakeerthy, D, “Novel Design of Permanent Magnet Synchronous Reluctance Motor using Finite Element Method,” Int. J. Eng. Sci. Innov. Technol., vol. 2, no. 1, pp. 37–45.
  • [21]K. Kurihara and M. A. Rahman, “High-Efficiency Line-Start Interior Permanent-Magnet Synchronous Motors”, IEEE Transactions on Industry Applications, vol. 40, no. 3, pp. 789–796, 2004.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ac7ff37-18f9-4b41-bd51-e01e861e11bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.