
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

OÄ ã«� R�ÖÙ�Ý�Äã�ã®ÊÄ Ê¥ P½�Ä�Ý ¥ÊÙ E¥¥®�®�Äã
GÙ�Ö«-��Ý�� SLAM ó®ã« H®¦«-½�ò�½ F��ãçÙ�Ý
OÄ ã«� R�ÖÙ�Ý�Äã�ã®ÊÄ Ê¥ P½�Ä�Ý ¥ÊÙ E¥¥®�®�Äã
GÙ�Ö«-��Ý�� SLAM ó®ã« H®¦«-½�ò�½ F��ãçÙ�Ý
OÄ ã«� R�ÖÙ�Ý�Äã�ã®ÊÄ Ê¥ P½�Ä�Ý ¥ÊÙ E¥¥®�®�Äã
GÙ�Ö«-��Ý�� SLAM ó®ã« H®¦«-½�ò�½ F��ãçÙ�Ý
OÄ ã«� R�ÖÙ�Ý�Äã�ã®ÊÄ Ê¥ P½�Ä�Ý ¥ÊÙ E¥¥®�®�Äã
GÙ�Ö«-��Ý�� SLAM ó®ã« H®¦«-½�ò�½ F��ãçÙ�Ý

SubmiĴed: 18th July 2016; accepted: 16th August 2016

Jan Wietrzykowski

DOI: 10.14313/JAMRIS_3-2016/18

Abstract:
Despite the fact, that dense SLAM systems are ex-

tensively developed and are geƫng popular, feature-
based ones sƟll have many advantages over them. One
of the most important maƩers in sparse systems are
features. The performance and robustness of a system
depends strictly on the quality of constraints imposed
by feature observaƟons and reliable matching between
measurements and features. To improve those two as-
pects, higher-level features can be used, and planes are
a natural choice. We tackle the problem of plugging
planes into the gଶo opƟmizaƟon framework with two
disƟnct plane representaƟons: one based on a properly
stated SE(3) parametrizaƟon and one based on a mini-
mal parametrizaƟonanalogous to quaternions. Proposed
soluƟons were implemented as extensions to the gଶo
framework and experiments that verify them were con-
ducted using simulaƟon.We provide a comparison of per-
formance under various condiƟons that emphasized dif-
ferences.

Keywords: SLAM, features, plane parametrizaƟon,
graph-based opƟmizaƟon

1. IntroducƟon
The simultaneous localization and mapping

(SLAM) problem has to be solved whenever a mobile
robot explores unknown environment. It can be a
scenario of exploring a disaster site or a previously
unvisited building. A variety of potential applications
fosters development of new SLAM solutions and
improvement of the existing ones. Particularly inter-
esting is the domain of 3D SLAM systems based on
affordable depth sensors, such as Kinect, because of
their high availability, low price and ability to provide
rich information about the environment [14]. Despite
the recent growth of the number of dense SLAM
systems, feature-based solutions still outperform
them with respect to the precision of camera motion
estimation and real-time performance [12]. The main
component in feature-based systems are sparse fea-
tures. Features have to provide enough information
to determine the sensor/robot position relatively to
an existing map. They have to be distinctive enough
to prevent wrong associations between the new
observations and the map. As the state estimation
techniques, either ϐiltration-based, like EKF [19], or
optimization-based [11] are not suited for handling
incorrect feature associations, the features in 3D
SLAM have to be chosen carefully to fulϐill those

requirements.
Until recent, most systems were based on photo-

metric point features, such as SURF [1] or ORB [15]
or their geometric counterparts extracted from point
clouds [14]. They are easy to compute and manage,
but constrains produced by them are often inaccurate
and they can be easily mismatched, which is a major
issue. It is caused by the fact that point features are
computed from a small local patch of the photomet-
ric or depth image, where the pixel values depend on
many factors, such as lighting, camera exposition pa-
rameters or the depth range. A solution to this prob-
lem is to use higher level geometric features, whose
positions relative to the sensor can be precisely de-
termined from more global data. It is expected that
features that describe spatially extended structures
of the scene will be more distinctive and repeatable
when re-observed by the sensor. A natural extension
topoint features are edgeorplane features. Theplanes
are particularly interesting, as they commonly exist in
man-made environments, such as building interiors,
and can be easily detected and isolated using a Kinect-
like depth sensor.Walls, ceiling and ϐloor are examples
of large planar segments that can be used in localiza-
tion and mapping. Due to the relatively small number
of detected planes in a typical environment, they can
be also easily matched between consecutive frames in
the data stream.

Beside the issues related to the front-end part of
a modern, optimization-based SLAM system [2], that
deals with processing of themeasurements and deter-
mination of measurement-to-object associations, at-
tention has to be paid to the back-end. The back-end
handles an optimization process that ϐinds the po-
sitions of robot and features that minimizes certain
criterion, given measurements and measurement-to-
object associations. Among many such systems, par-
ticularly interesting are the factor-graph-based li-
braries, because of their ϐlexibility and intuitive prob-
lem formulation. Thus, in section 5 we propose an ex-
tension to the popular factor graph gଶo back-end sys-
tem [11] in the form of a new constraint edge and a
corresponding feature vertex. The extension enables
a fast and accurate optimization of pose-to-plane con-
straints by means of a minimal parametrization of the
planes. We also compare the new approach to a sim-
pliϐied solution based on an overparametrized repre-
sentation using the standard gଶo edges and vertices.
This simpliϐied solution is presented in section 4. We
show at ϐirst that using the standard vertices and con-
straints available in gଶo is inefϐicient for planar fea-

3



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

tures, and then we compare the two solutions pro-
posed in the paper by applying the Absolute Trajec-
tory Error (ATE) and Relative Pose Error (RPE) met-
rics [17], widely used in the SLAM research commu-
nity. As this is a preliminary work on SLAM based on
high level features, we focus on the optimization back-
end and conduct simulations using a simpliϐied sys-
tem that lacks a real front-end for the extraction and
matching of planar features. Similarly to the approach
introduced in [3] we replace the front-end by a simu-
lation that allows us to control the uncertainty ofmea-
surements by adding Gaussian noise and to control
the number and location of features (i.e. planes in our
case) in the environment.

2. Related Work
Since the introduction of theKinect, that started an

era of cheap depth sensors, many 3D SLAM solutions
using depth and visual information emerged.

Pixel intensities and depth measurements are di-
rectly used in dense SLAMsystems, like the onebyKerl
et al. [10]. A motion between two consecutive frames
is estimatedbyminimizing a difference between apre-
dicted and an actual measurement in both, photomet-
ric and depth, domains. A large scale system, using a
stereo camera instead of a depth sensor, is presented
by Engel et al. [5]. A transformation between camera
pose at two different frames can be also computed us-
ing iterative closest point, as in [13], whereKinect sen-
sor is used to map and track dense surfaces. Another
approach is to extract point features and use a sparse
representation of measurements, as in the work by
Belter et al. [2].

One of the earliest attempts to use planes as fea-
tures was by Weingarten and Siegwart [19]. They
adopted SPmodel [4] to represent planes and har-
nessed Extended Kalman Filter (EKF) to update the
SPmap containing robot pose and feature locations.
The SPmodel (symmetries and perturbation model)
uses a probabilistic representation of the imprecision
in the location of features, and the theory of sym-
metries to represent the partiality of the uncertainty
due to the parametrization of the feature. Unfortu-
nately, the plane representation is overparametrized
and EKF-SLAM cannot exploit the sparsity of feature
observations, in contrast to our solution.

Salas-Moreno et al. [16] proposed a method to
densely map an environment with usage of bounded
planes and surfels. Planar regions are reϐined and ex-
tended during camera’s movement and can serve as a
display for an augmented reality content.

A solution based on both, point and plane fea-
tures was presented by Taguchi et al. [18]. They use
a general form equation to parametrize planes, which
is a non-minimal representation, and a sparse linear
solver in the Gauss-Newton iterative optimization al-
gorithm. Error calculation between the estimated and
the measured plane is accomplished by means of ran-
dom sampling of the measurement points. A sparse
solver is also employed in the work by Kaess [8],
where a minimal representation of planes based on

quaternions was introduced. Optimization is done by
the iSAM algorithm [9].

A popular tool for graph-based optimization is the
gଶo framework, that outperformsmanyother systems,
including iSAM [11]. It is widely used in point-feature-
based SLAM systems, such as those by Mur-Artal et al.
[12] or Belter et al. [3]. Thus, the gଶo library was cho-
sen as the framework wewant to test for handling op-
timization of pose-to-plane constraints, and then ex-
tend by a new minimal representation of the planar
features.

3. Problem FormulaƟon Using Graph
The part of the SLAM problem related to the back-

end operation is to ϐind the camera and feature posi-
tions that best ϐit the collected observations. To solve
this problem efϐiciently, a proper representation of the
constraints is needed. One of the possibilities is to
model the system as a factorized probabilistic equa-
tion:

𝑝(𝐱|𝐳) = 1
𝑍 ෑ

௔∈ி
Ψ௔(𝐱௔ , 𝐳௔), (1)

where 𝐱 are random variables, 𝐳 are measurement
variables, that are observed, 𝑍 is a normalization con-
stant, 𝐹 is a set of factors,Ψ௔(𝐱௔ , 𝐳௔) is a value of a fac-
tor 𝑎, 𝐱௔ is a subset of random variables that the factor
𝑎 depends on, and 𝐳௔ is a subset of measurement vari-
ables that the factor 𝑎 depends on. Factor Ψ௔(𝐱௔ , 𝐳௔)
is a function, usually based on the Gaussian distribu-
tion, thatmeasures how likely the state of variables 𝐱௔
explain measurements 𝐳௔ . Throughout this paper, we
use the following form of factors:

Ψ௔(𝐱௔ , 𝐳௔) = exp ቊ−1
2𝐞௔(𝐱௔ , 𝐳௔)

்Ω௔𝐞௔(𝐱௔ , 𝐳௔)ቋ ,
(2)

where 𝐞௔(𝐱௔ , 𝐳௔) is an error function and an informa-
tion matrix is denoted by Ω௔ .

The error function returns a vector of differences
between measurement prediction 𝐡௔(𝐱௔) based on
the state of variables 𝐱௔ and an actual measurement
𝐳௔:

𝐞௔(𝐱௔ , 𝐳௔) = 𝐡௔(𝐱௔) ⊖ 𝐳௔ , (3)
where⊖ is an operator that is a generalization of the
subtraction operation, for example taking into account
rotation ambiguities, deϐined depending on the repre-
sentation. Dimensionality of the error vector depends
on the type of measurement and its representation. In
the case ofminimal representationof planes it is 3, and
in the case of SE(3) it is 6.

The problem can be presented using a probabilis-
tic graphical model, as shown in Fig. 1. The robot and
feature positions are encoded by subsets of variables
organized in a proper representation, e.g. a transla-
tion vector and 3 imaginary components of an unit
quaternion for SE(3). If the position 𝑖 has SE(3) repre-
sentation, then the set 𝐱௩௜ contains 6 variables. There
is no difference between variables representing fea-
ture and robot positions, besides from their mean-
ing. Factor is dependent on all variables that repre-
sent the robot and feature positions connected to it.

4



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Fig. 1. ProbabilisƟc graphical model represenƟng the
SLAM opƟmizaƟon problem. Variables encoding robot
posiƟons are marked as white circles, variables
encoding feature posiƟons are marked as gray circles,
factors are marked as black squares and subset of
variables that represent posiƟon 𝑖 is denoted by 𝐱௩௜

This form emphasizes the sparsity of dependencies
between the robot positions and feature positions.
Properly exploiting the sparsity enables efϐicient op-
timization and is in the core of back-end systems de-
velopment.

The optimization can be formulated as a process of
ϐinding values of variables 𝐱 that maximizes the prob-
ability (1), denoted by 𝐱∗. By taking the logarithm of
probability it can be written as:

𝐱∗ = argmax
𝐱

1
𝑍 ෑ

௔∈ி
Ψ௔(𝐱௔ , 𝐳௔) (4)

= argmin
𝐱

෍
௔∈ி

𝐞௔(𝐱௔ , 𝐳௔)்Ω௔𝐞௔(𝐱௔ , 𝐳௔) (5)

= argmin
𝐱

෍
௔∈ி

𝑙௔(𝐱௔ , 𝐳௔). (6)

Although, in general, the problem is not convex, an
iterative method is used to ϐind the optimal values of
𝐱. The assumption is made, that initial guess is good
enough not to cause a divergence of the algorithm. At
every iteration step, the functions 𝑙௔(𝐱௔ , 𝐳௔) are lin-
earized in the currently estimated state of variables 𝐱
and an optimal step is calculated, denoted by Δ𝐱∗. The
linearization is expressed by (we omit dependence on
𝐳௔ to simplify notation as values of 𝐳௔ are constant):

𝑙௔(𝐱௔ + Δ𝐱௔) (7)
= 𝐞௔(𝐱௔ + Δ𝐱௔)்Ω௔𝐞௔(𝐱௔ + Δ𝐱௔) (8)
≃ [𝐞௔(𝐱௔) + 𝐉௔(𝐱௔)Δ𝐱௔]் Ω௔ [𝐞௔(𝐱௔) + 𝐉௔(𝐱௔)Δ𝐱௔]

(9)
= 𝐞௔(𝐱௔)்Ω௔𝐞௔(𝐱௔)
+ 2𝐞௔(𝐱௔)்Ω௔𝐉௔(𝐱௔)Δ𝐱௔
+ Δ𝐱்௔𝐉௔(𝐱௔)்Ω௔𝐉௔(𝐱௔)Δ𝐱௔ (10)

= 𝑐௔(𝐱௔) + 𝐛௔(𝐱௔)Δ𝐱௔ + Δ𝐱்௔𝐇௔(𝐱௔)Δ𝐱௔ , (11)

where 𝐉௔ is a Jacobianmatrix of the error functionwith
respect to variables 𝐱௔ in the current point. If we ex-
pand all vectors and matrices in equation (11) to in-
clude all 𝐱 variables, the iteration step can be written

as:

Δ𝐱∗ = argmin
𝚫𝐱

෍
௔∈ி

𝑙௔(𝐱௔ , 𝐳௔) (12)

≃ argmin
𝚫𝐱

෍
௔∈ி

𝑐௔ + 𝐛௔Δ𝐱௔ + Δ𝐱்௔𝐇௔Δ𝐱௔ (13)

= argmin
𝚫𝐱

𝑐 + 𝐛Δ𝐱 + Δ𝐱்𝐇Δ𝐱, (14)

where 𝑐 = ∑௔∈ி 𝑐௔ , 𝐛 = ∑௔∈ி 𝐛௔ , and 𝐇 = ∑௔∈ி 𝐇௔ .
The Δ𝐱∗ value is calculated using equation:

𝐇Δ𝐱∗ = −𝐛. (15)

After ϐinding Δ𝐱∗, current estimate is updated accord-
ing to formula:

𝐱௜ାଵ = 𝐱௜ ⊕Δ𝐱௜∗, (16)

where⊕ is a generalization of addition operator, de-
ϐined depending on the representation. Note that in-
crements are computed by considering derivatives of
the error function with respect to variables, therefore
units, inwhich those variables are expressed, are irrel-
evant.

Iterations are performed until an optimal solution
is found. Usually, algorithms like Gauss-Newton or
Lavenberg-Marquardt are used in combination with
sparse linear optimizers to solve equation (15). The
sparsity is encoded in the 𝐇 matrix, since only some
values are non-zero (value at position (𝑖, 𝑗) canbenon-
zero only if variables 𝑥௜ and 𝑥௝ are related by a factor).

The gଶo framework organizes probabilistic graph-
ical models in a form of vertices and edges. Vertices
are representing subsets of variables denoting robot
or feature poses and have to determine a proper
representation of those variables. Therefore, vertices
also implement ⊕ operator suitable for chosen rep-
resentation. Edges are analogues of factors and, as
such, they bind vertices with measurements. Gener-
ally, edges can connect multiple vertices, but in our
system they always connect two. The operation that
has to be implemented in an edge is error calcula-
tion, therefore they implement ⊖ operation. Option-
ally, edges can also implement analytical calculation of
the Jacobian matrices, which are by default computed
numerically [11].

4. SE(3) Plane RepresentaƟon
This section presents a simpliϐied solution based

on a SE(3) representation of planes. It was necessary
to introduce some assumptions and simpliϐications to
plug planes into overparametrized representation.

Usually, using depth sensors, a planemeasurement
is representedas anormal vector𝐧 in the sensor frame
of reference and distance 𝑑 to the sensor (hereinafter
called camera for convenience). Some assumptions
have to be made to convert this representation to the
SE(3) one, since the number of such overparametrized
representations is inϐinite. Hence, we assumed that a
plane coordinate system has the following properties:
- The origin is located in the plane point nearest to
a camera.

5



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Fig. 2. A schemaƟc view of assumpƟons about
coordinate system of a plane

- The 𝑧 axis is perpendicular to a plane.
- The 𝑥 axis direction is determined by a cross prod-
uct of the normal vector and the [1, 0, 0]் vector (if
they are parallel, with [0, 1, 0] vector). This assump-
tion is only important to assure that the 𝑥 axis will
be parallel to the 𝑧 axis.

- The 𝑦 axis direction is determined by a cross prod-
uct of the unit vectors in the 𝑧 axis and the 𝑥 axis
directions.

Obviously, there is an ambiguity in the representation,
and the global coordinates of a plane depend on the
camera position (they won’t be the same for different
camera poses). It is caused by the fact that a plane is an
object with 3 degrees of freedom (DOF), whereas the
SE(3) representation has 6 DOF. Therefore, the frame
of reference of an inϐinite plane can move freely along
the 𝑥 and 𝑦 axes of this plane, and can rotate around
it’s 𝑧 axis, which gives extra 3 DOF. The different place-
ment of the origin cannot be avoided in a real-world
scenario, but, as it will be shown, the difference has no
effect on results thanks to a proper informationmatrix
formulation. A schematic illustration of a plane coor-
dinate system is presented in Fig. 2.

The standard gଶo SE(3) vertex represents the posi-
tion in the form of a translation-quaternion (TQ) vec-
tor:

𝐯 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑡௫
𝑡௬
𝑡௭
𝑞௫
𝑞௬
𝑞௭

⎤
⎥
⎥
⎥
⎥
⎦

, (17)

where 𝑡௫ , 𝑡௬ , 𝑡௭ are Euclidean coordinates and 𝑞௫ , 𝑞௬ ,
𝑞௭ are imaginary components of an unit quaternion
with the real component 𝑞௪ ⩾ 0. In the SE(3) edge
values 𝐳௔ represent measurement of a transformation
from the camera frame of reference to the plane frame
and is also represented by a TQ vector. As 𝐱 and 𝐳 are
just sets of numbers, we use 𝐯(⋅) operator to indicate
that they should be treated as a TQ vector. The sym-
bols 𝐱௔௖ and 𝐱௔௣ denote subsets of 𝐱௔ variables rep-
resenting global camera and global robot position, re-

Fig. 3. TransformaƟons between frames of reference.
Π௚ is a global frame of reference, Π௖ is a camera frame
of reference and Π௣ is plane frame of reference

spectively. Transformations between frames of refer-
ence are depicted in Fig 3.

An error, introduced in the equation (3), is deϐined
as follows:

𝐞௔(𝐱௔ , 𝐳௔) = 𝐯(𝐳௔)ିଵ ൣ𝐯(𝐱௔௖)ିଵ𝐯(𝐱௔௣)൧ , (18)
wheremultiplication is a concatenationof transforma-
tions (not a matrix multiplication), 𝐯ିଵ is an inversion
of the transformation𝐯, and𝐯(𝐱௔௖)ିଵ𝐯(𝐱௔௣) can be in-
terpreted as measurement prediction.

The error is deϐined in the plane’s frame of refer-
ence, therefore an informationmatrix𝛀௔ has to be de-
ϐined in the same frame. In an overparametrized rep-
resentation, suchas theone consideredhere, the infor-
mation matrix is particularly important. It should de-
ϐine large (theoretically inϐinite) uncertainty in the di-
mensions, in which the representation is ambiguous.
If the 𝑖-th dimension is a surplus, then the element of
𝛀௔ at location (𝑖, 𝑖) should be equal to zero. Unfortu-
nately, the matrix constructed in such way would be
rank deϐicient and impossible to invert. The inability
to invertwoulddiscard a largenumber of optimization
algorithms. Therefore, we decided to circumvent this
limitation by inserting a very small number instead of
0. Another problemwas how to specify an information
matrix for rotation represented by a quaternion. To
overcome the problem, we constructed a covariance
matrix for the extended representation (including 𝑞௪
value) in the form:

𝐂 = ቈ 𝐂௧ 𝟎ଷxସ
𝟎ସxଷ 𝐂௥௤ ቉ , (19)

where 𝐂௧ was deϐined as follows:
𝐂௧ = diag(𝑐, 𝑐, 1) (20)

and 𝐂௥௤ as follows:
𝐂௥௤ = 𝐉௤௥𝐂௥௥𝐉்௤௥ . (21)

Here 𝐂௥௥ is the covariance matrix for a rotation ex-
pressed by a 3×3 rotation matrix, deϐined as (for a
row-major order of matrix elements):

𝐂௥௥ = diag(𝑐, 𝑐, 1, 𝑐, 𝑐, 1, 1, 1, 1) (22)

6



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

and 𝐉௤௥ is Jacobian matrix of the conversion from a
rotation matrix to a quaternion at the identity point
(derived from the equation converting rotationmatrix
representation to a quaternion representation):

𝐉௤௥ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0.125
0 0 0.250 0
0 −0.250 0 0
0 0 −0.250 0
0 0 0 0.125

0.250 0 0 0
0 0.250 0 0

−0.250 0 0 0
0 0 0 0.125

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

்

. (23)

In the above equations 𝑐 is some large value that indi-
cates that in this dimension a variance is inϐinite. We
used 𝑐 = 1000 which was a good compromise be-
tween accuracy and numerical stability. The ϐinal in-
formation matrix is the 6×6 upper-left corner part of
the inverse of the 𝐂matrix:

Ω௔ = [𝐂ିଵ]଺×଺. (24)

The⊕ operator is realized by multiplying a trans-
formation represented by the current state of vari-
ables by a transformation expressed by the computed
increment Δ𝐱௜∗:

𝐯(𝐱̂௜ାଵ௔௩ ) = 𝐯(𝐱̂௜௔௩)𝐯(Δ𝐱௜∗௔௩). (25)

The implementation was intended to be simple
and demand small amount of work, so it was realized
using standard gଶo edges and vertices. The additional
advantage of this approach is that the gଶo framework
implements analytical calculationof Jacobianmatrices
for standard classes. It was necessary to compute in-
formationmatrix and implement ameasurement sim-
ulation. The simulation was accomplished by adding
Gaussian noise to the normal vector 𝐧 components
and a distance value 𝑑, and then calculating 𝐯(𝐳௔) us-
ing the previously deϐined assumptions about the co-
ordinate system of a plane.

5. Minimal Plane RepresentaƟon
To represent a plane only 3 values are required,

since it is an object with 3 DOF. In this section we
present a solution based on a representation that uses
only 3 values and therefore is minimal. Nevertheless,
using a normal vector and adistance requires 4 values:
3 components of 𝐧 = [𝑛௫ , 𝑛௬ , 𝑛௭]் and 𝑑. The same
problem occurs with a general plane equation:

𝑝ଵ𝑥 + 𝑝ଶ𝑦 + 𝑝ଷ𝑧 + 𝑝ସ = 0. (26)

The solution is to normalize the general plane equa-
tion, so ‖𝐩‖ = ‖[𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ]்‖ = 1 and restrict
𝑝ସ ⩾ 0. After doing so, only the ϐirst 3 components
of the vector 𝐩 are relevant, since the last one can be
retrieved using formula:

𝑝ସ = ට𝑝ଶଵ + 𝑝ଶଶ + 𝑝ଶଷ . (27)

It is an analogue to an unit quaternion and all oper-
ations on quaternions can be transfered to this repre-
sentation [8]. Therefore, it is aminimal representation
without singularities, what makes it suitable for opti-
mization purpose.

With the minimal representation, we used expo-
nential and logarithm map to calculate the error and
update current positions. An exponentialmap is amap
from the Lie algebra to a Lie group and a logarithm
map is a map in the reverse direction. The error cal-
culation in an edge connecting a camera position and
a plane position is performed using the logarithmmap
of quaternions:

𝐞௔(𝐱௔ , 𝐳௔) = 𝐪 ൣ𝐓(𝐱௔௖)்𝐩(𝐱௔௣)൧ ⊖ 𝐪(𝐳௔) (28)
= log ቄ𝐪 ൣ𝐓(𝐱௔௖)்𝐩(𝐱௔௣)൧

ିଵ 𝐪(𝐳௔)ቅ ,
(29)

where 𝐪(𝐱௩) denotes a quaternion formed from vari-
ables 𝐱௩ , 𝐓(𝐱௩) is a homogeneous transformation ma-
trix constructed fromvariables𝐱௩ , and𝐩(𝐱௩) is a plane
equation based on variables 𝐱௩ . Note that transforma-
tion of a general plane equation from Π௚ frame of ref-
erence to Π௖ frame is expressed differently than the
same transformation for apoint. It is doneby the equa-
tion (𝐓௜,௝ denotes a homogeneous transformationma-
trix for a transformation from Π௜ to Π௝):

𝐩௖ = 𝐓ି்
௖,௚𝐩௚ (30)

= 𝐓்
௚,௖𝐩௚ . (31)

The logarithm map is a 3 dimensional vector given by
the equation:

log(𝐪) = 2cos
ିଵ(𝑞௪)
‖𝐪௩‖

𝐪௩ , (32)

where 𝐪௩ is an imaginary part of the quaternion 𝐪.
Updates of variables are done using exponential

maps for both, camera positions and plane positions.
The update for planes is done using the following for-
mula:

𝐪(𝐱௜ାଵ௔௣ ) = exp ൣ𝜔(Δ𝐱௜∗௔௣)൧ 𝐪(𝐱௜௔௣), (33)

where exponential map for a plane is deϐined as:

exp(𝜔) = ቈ
ଵ
ଶ sin(

ଵ
ଶ‖𝜔‖)𝜔

cos(ଵଶ‖𝜔‖)
቉ . (34)

The update for camera positions is done in a similar
way, but instead of quaternions, operations are per-
formed on TQ vectors:

𝐯(𝐱௜ାଵ௔௖ ) = exp ൣ𝐝(Δ𝐱௜∗௔௖)൧ 𝐯(𝐱௜௔௖). (35)

The increment used in the above equation comprises
a translational and a rotational part, same as the TQ
vector:

𝐝 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜐௫
𝜐௬
𝜐௭
𝜔௫
𝜔௬
𝜔௭

⎤
⎥
⎥
⎥
⎥
⎦

= ቈ𝜐𝜔቉ (36)

7



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Denoting the result of the exponential mapping by:

exp(𝐝) = ቈ𝐭ௗ𝐪ௗ቉ , (37)

the calculation can be done using equations:

𝐭ௗ = 𝐕𝜐 (38)

and
𝐪ௗ = 𝐪(𝐑). (39)

Note that, in the notation above, a quaternion is
constructed from a rotation matrix, not from a 4-
dimensional vector. Thematrices𝐕 and𝐑 are given by
equations:

𝐕 = 𝐈 + 1 − cos(‖𝜔‖)
‖𝜔‖ଶ [𝜔]× +

‖𝜔‖ − sin(‖𝜔‖)
‖𝜔‖ଷ [𝜔]ଶ×

(40)
and

𝐑 = 𝐈 + sin(‖𝜔‖)
‖𝜔‖ [𝜔]× +

1 − cos(‖𝜔‖)
‖𝜔‖ଶ [𝜔]ଶ×, (41)

where [𝜔]× is a skew-symmetric matrix:

[𝜔]× = ቎
0 −𝜔௭ 𝜔௬
𝜔௭ 0 −𝜔௫
−𝜔௬ 𝜔௫ 0

቏ . (42)

We implemented an extension to the standard set
of gଶo edges and vertices by adding a vertex repre-
senting a plane position and an edge connecting cam-
era position and plane position. As the camera posi-
tion vertex we used a SE(3) vertex that uses expo-
nential map, included in the framework. During ex-
periments, measurements were simulated by adding
Gaussian noise to the components of the normal vec-
tor 𝐧 and to the distance 𝑑 value. The quaternion rep-
resentation was obtained by constructing a general
plane equation, and then properly normalizing a vec-
tor of parameters. The vector had the following form:

𝑝 =
⎡
⎢
⎢
⎣

𝑛௫
𝑛௬
𝑛௭
−𝑑

⎤
⎥
⎥
⎦
. (43)

In the current version, the Jacobian matrix was com-
puted numerically.

6. Experiments and Results
To experimentally evaluate the proposed models

of planar features and the constraints related to them,
we simulatedmotion of a camera in an empty room. As
demonstrated in [3], such a simple experiment clearly
reveals how the behavior of the optimization back-end
depends on the parametrization of the uncertainty
model of the features. The simulated front-end does
not introduce any errors due towrong feature associa-
tions ormultiplicated features, thus the results are iso-
lated from the qualitative errors that are unavoidable
in a real front-end. In order to make the simulation
maximally realistic as to the dynamics of the sensor

Fig. 4. An overview of the simulated environment.
Normal vectors 𝐧ଵ, 𝐧ଶ, 𝐧ଷ and distance values 𝑑ଵ, 𝑑ଶ,
𝑑ଷ were noised measurement values

motion we used an example trajectory from the ICL-
NUIM Ofϔice Room Dataset [7] and inserted a virtual
ϐloor and two walls that were always observed by the
sensor. An overview of the simulated environment is
shown in Fig. 4. Normal vectors𝐧ଵ,𝐧ଶ,𝐧ଷ anddistance
values 𝑑ଵ, 𝑑ଶ, 𝑑ଷ were the common source of infor-
mation for both parametrizations. All representations
were obtained from those values with added Gaussian
noise of the standard deviation equal to 0.01.

Optimization was done in batch mode. First, all
vertices, along with their initial position estimations,
and edges were added to the graph and than the
optimization process was triggered. In both cases
we used Gauss-Newton algorithm with the Precon-
ditioned Conjugate Gradient (PCG) linear solver. The
numberof iterationswas limited to100, although in all
tests the algorithm converged earlier. We tested when
a change of the error value 𝑙 between iterations will
drop below 10ି଺𝑙. For the SE(3) representation it was
after the 26-th iteration and took 0.343 s. In the case
of theminimal representation, it happened after the 9-
th iteration and took 0.257 s. Both results enable real-
time operation, but the optimizationwith theminimal
representation converges faster and needs fewer iter-
ations.

An initial guess to camera positions was obtained
by simulating dead reckoning (e.g. visual odometry, as
used in [2]). We calculated differences between con-
secutive poses in the ground truth trajectory, added
noise to every difference and then build an odometry
trajectory by stacking noised difference transforma-
tions. If 𝑇̃௜,௜ାଵ is a noised transformation from ground
truth trajectory pose 𝑖 to pose 𝑖+1, then the odometry
pose 𝑖 + 1 is expressed by:

𝑂௜ାଵ = 𝑂௜𝑇̃௜,௜ାଵ. (44)
First, we investigated a behavior of the system

when the information matrix 𝛀௔ for SE(3) represen-
tation was set to identity to highlight that using this
representation for planes is not obvious. Setting the
information matrix to identity is a common practice,
but should be done carefully, in particular when the
measurements or the state variables span over non-
Euclidean manifold spaces [6]. Effects of neglecting

8



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Fig. 5. VisualizaƟon of the SE(3) opƟmizaƟon results
with the informaƟon matrices set to idenƟty

Tab. 1. Results of the SE(3) and minimal representaƟon
opƟmizaƟons with perpendicular planes

measure SE(3) minimal

RPE translational [m]

rmse 0.034 0.031
mean 0.031 0.028
median 0.029 0.026
std 0.014 0.013
max 0.111 0.107

RPE rotational [∘]

rmse 1.001 1.139
mean 0.923 1.049
median 0.016 0.018
std 0.389 0.446
max 2.859 2.960

ATE [m]

rmse 0.021 0.017
mean 0.019 0.016
median 0.019 0.015
std 0.008 0.007
max 0.062 0.042

the partiality of uncertainty in planar features can be
seen in Fig. 5. As expected, when the identity matri-
ces are used, the optimized trajectory is a degenerated
version of the ground truth one, because the least-
squares minimization could not be constrained to the
proper manifold.

The next experiment compared the SE(3) andmin-
imal representations with properly set information
matrices for the situation when the plane features
were perpendicular each to the other. This “natural”
conϐiguration of walls in a room provides also the best
constraints to the simple system under study, as there
are similar constraints along each axis of the global
coordinate system. Quantitative results are gathered
in Tab. 1, while the estimated trajectories are visu-
alized in Fig. 6. We apply the ATE and RPE metrics.
ATEcompares thedistancebetween the estimatedand
ground truth trajectories, whereas RPE corresponds
to the drift of the trajectory [17]. From the trajectories
it is clearly visible that both solutions reconstructed
the camera motion with small errors. The numeric re-
sults are slightly better for the minimal representa-
tion, but the differences are rather irrelevant.

Fig. 6. Results of the SE(3) and minimal representaƟon
opƟmizaƟons with perpendicular planes

Fig. 7. Results of the SE(3) and minimal representaƟon
opƟmizaƟons when walls approach floor inclinaƟon.
The 𝜃 is an angle by which walls were Ɵlted

Differences emerged with more challenging se-
tups, in which walls were not perpendicular to the
ϐloor and each to the other. A dependency between the
angle by which the walls were tilted and the errors in
trajectory estimation is visible in Fig. 7. When the an-
gle is small and the measurements of the positions of
walls impose strong constraints, the error values are
similar to the ones obtained in the previous experi-
ment, but when the walls approach the ϐloor inclina-
tion and are close to being parallel to the groundplane,
the error for estimationwith the SE(3) representation
grows faster. Note that the ATE metrics plot behaves
exactly as the relative positional error plot, which is
caused by the fact, that there are no signiϐicant loop
closures in the small simulation environment, hence
the trajectory does not changemuch after the ϐinal op-
timization. The resultswithwalls tiltedby80∘are visu-
alized in Fig. 8.

7. Conclusions
We proposed two solutions to the problem of rep-

resenting plane-based features in the gଶo framework.
First solution was based on a standard set of ver-

9



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Fig. 8. VisualizaƟon of the SE(3) and minimal
representaƟon opƟmizaƟons results with walls Ɵlted
by 80∘

tices and edges from the framework and represented
planes using SE(3) parametrizationwith carefully pre-
pared information matrix. Second solution used min-
imal representation of planes and required an imple-
mentation of the vertex and the edge that extended the
gଶo functionality. The implementation is an important
contribution as it can be easily used in further devel-
opment, as well as in other applications. Experiments
veriϐied that both approaches give reasonable results
and can operate in real-time. When overparametrized
representation is used, it is important to carefully con-
struct informationmatrix. Thematrix instructs the op-
timization algorithm which dimensions are relevant
andwhat are relations between coordinate uncertain-
ties. Despite the fact that presented approaches are
theoretically equivalent, when conditions are harsh,
themore speciϐic solution performs better as comes to
accuracy and convergence time. The work gives an in-
sight how surplus dimensions affect the optimization
process. The difference could bemore signiϐicant if Ja-
cobian matrices were computed analytically in both
cases. Although experiments in a synthetic environ-
ment, without a real front-end, give no possibility to
compare the performance of our approach with other
systems, the presented solution provides a good start
point for development of a complete SLAM system
based on higher-level features.

Future work will focus on adding a front-end func-
tionality to the system. We want to develop an al-
gorithm for detecting and isolating planes, matching
planes between consecutive frames and recognizing
visited places. Considering other types of features in
a single framework to build a robust and versatile sys-
tem is also planned.

AUTHOR
Jan Wietrzykowski∗ – Poznań University of Technol-
ogy, Institute of Control and Information Engineer-
ing, ul. Piotrowo 3A, 60-965 Poznań, Poland, e-mail:
jan.wietrzykowski@cie.put.poznan.pl.
∗Corresponding author

REFERENCES
[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool,

“Speeded-Up Robust Features (SURF)”, Com-
put. Vis. Image Underst., vol. 110, no. 3, 2008,
346–359.

[2] D. Belter, M. Nowicki, and P. Skrzypczyński.
“Accurate Map-Based RGB-D SLAM for Mobile
Robots”. In: L. P. Reis, A. P. Moreira, P. U. Lima,
L. Montano, and V. Muñoz Martinez, eds., Robot
2015: Second Iberian Robotics Conference, vol-
ume 418 of Advances in Intelligent and Soft Com-
puting (AISC), 533–545. Springer International
Publishing, 2016.

[3] D. Belter, M. Nowicki, and P. Skrzypczyński, “Im-
proving accuracy of feature-based RGB-D SLAM
by modeling spatial uncertainty of point fea-
tures”. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2016,
1279–1284.

[4] J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D.
Tardos, “The SPmap: a probabilistic framework
for simultaneous localization and map building”,
IEEE Transactions on Robotics and Automation,
vol. 15, no. 5, 1999, 948–952.

[5] J. Engel, J. Stückler, and D. Cremers, “Large-scale
direct SLAMwith stereo cameras”. In: Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ Inter-
national Conference on, 2015, 1935–1942.

[6] G. Grisetti, R. Kümmerle, and K. Ni, “Robust op-
timization of factor graphs by using condensed
measurements”. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
2012, 581–588.

[7] A. Handa, T. Whelan, J. McDonald, and A. J. Davi-
son, “A benchmark for rgb-d visual odometry, 3d
reconstruction and slam”. In: 2014 IEEE Inter-
national Conference on Robotics and Automation
(ICRA), 2014, 1524–1531.

[8] M. Kaess, “Simultaneous Localization and Map-
ping with Inϐinite Planes”. In: IEEE Intl. Conf.
on Robotics and Automation, ICRA, Seattle, WA,
2015, 4605 – 4611.

[9] M. Kaess, A. Ranganathan, and F. Dellaert,
“iSAM: Incremental Smoothing and Mapping”,
IEEE Transactions on Robotics, vol. 24, no. 6,
2008, 1365–1378.

[10] C. Kerl, J. Sturm, and D. Cremers, “Dense visual
SLAM for RGB-D cameras”. In: 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems, 2013, 2100–2106.

[11] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige,
and W. Burgard, “Gଶo: A general framework for
graph optimization”. In: Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference
on, 2011, 3607–3613.

[12] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós,
“ORB-SLAM: A Versatile and Accurate Monocu-

10



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

lar SLAM System”, IEEE Transactions on Robotics,
vol. 31, no. 5, 2015, 1147–1163.

[13] R. A. Newcombe, S. Izadi, O. Hilliges,
D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinect-
Fusion: Real-time dense surface mapping and
tracking”. In: Mixed and Augmented Reality (IS-
MAR), 2011 10th IEEE International Symposium
on, 2011, 127–136.

[14] M. Nowicki and P. Skrzypczyński, “Experimental
Veriϐication of a Walking Robot Self-Localization
System with the Kinect Sensor”, Journal of Au-
tomation, Mobile Robotics and Intelligent Sys-
tems, vol. 7, no. 4, 2013, 42–52.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“ORB: An efϐicient alternative to SIFT or SURF”.
In: 2011 International Conference on Computer
Vision, 2011, 2564–2571.

[16] R. F. Salas-Moreno, B. Glocken, P. H. J. Kelly, and
A. J. Davison, “Dense planar SLAM”. In:Mixed and
Augmented Reality (ISMAR), 2014 IEEE Interna-
tional Symposium on, 2014, 157–164.

[17] J. Sturm, N. Engelhard, F. Endres,W. Burgard, and
D. Cremers, “A Benchmark for the Evaluation of
RGB-D SLAM Systems”. In: Proc. of the Inter-
national Conference on Intelligent Robot Systems
(IROS), 2012.

[18] Y. Taguchi, Y. D. Jian, S. Ramalingam, and C. Feng,
“Point-plane SLAM forhand-held3D sensors”. In:
Robotics andAutomation (ICRA), 2013 IEEE Inter-
national Conference on, 2013, 5182–5189.

[19] J. Weingarten and R. Siegwart, “3D SLAM using
planar segments”. In: 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems, 2006, 3062–3067.

11


	Introduction
	Related Work
	Problem Formulation Using Graph
	SE(3) Plane Representation
	Minimal Plane Representation
	Experiments and Results
	Conclusions

