PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of zeolite A using the waste of iron mine tailings dam and its application for industrial effluent treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In November 2015, a dam from iron mining collapsed, which is considered as the largest environmental accident in Brazil. Over than 50 million m³ were released reaching the Doce River and killed 20 people in Mariana. The literature review shows that the mining tailings can be used as raw material to the synthesis of zeolites, which can be used for the wastewater treatment. The aim of this work was the synthesis of zeolites from the Samarco tailings and its application for the treatment of electroplating effluent. The residue was characterized which identified high-iron content for the synthesis of zeolites. The residue was mixed with NaOH (1:1) and the reaction temperature was evaluated from 350 °C to 650 °C. Then, the material was mixed with aluminum source and the effect of time was evaluated. The zeolite was applied to the wastewater treatment from electroplating industry. Results showed that the synthesis of zeolite A was carried out with a fusion step at 450 °C for 1 h using RAS: NaOH ratio 1:1, and further hydrothermal treatment at 100 °C during 4 h. The zinc removal from the wastewater was up to 98% using 50 mL of the solution, 2.5 g zeolite A, 60min and pH 6.4. The main metals presented in the solution were adsorbed up to 90% by the zeolite synthesized. Zinc adsorption by the zeolite fitted better on Langmuir isotherm. The zeolite was used four times in a row and zinc removal declined 98-68%.
Rocznik
Strony
277--286
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Department of Chemical Engineering, Polytechnic School, University of Sao Paulo. Av. Prof. Luciano Gualberto, travessa 3, No. 380, 05508-010, São Paulo, SP, Brasil
  • Colégio Dante Alighieri, Macro Area of the Sciences of the Nature, Alameda Jaú, 1061, CEP 01420-002, São Paulo, SP, Brazil
  • Colégio Dante Alighieri, Macro Area of the Sciences of the Nature, Alameda Jaú, 1061, CEP 01420-002, São Paulo, SP, Brazil
  • Colégio Dante Alighieri, Macro Area of the Sciences of the Nature, Alameda Jaú, 1061, CEP 01420-002, São Paulo, SP, Brazil
  • Department of Chemical Engineering, Polytechnic School, University of Sao Paulo. Av. Prof. Luciano Gualberto, travessa 3, No. 380, 05508-010, São Paulo, SP, Brasil
  • Department of Chemical Engineering, Polytechnic School, University of Sao Paulo. Av. Prof. Luciano Gualberto, travessa 3, No. 380, 05508-010, São Paulo, SP, Brasil
  • Department of Chemical Engineering, Polytechnic School, University of Sao Paulo. Av. Prof. Luciano Gualberto, travessa 3, No. 380, 05508-010, São Paulo, SP, Brasil
Bibliografia
  • 1. Adiansyah, J. S., Rosano, M., Vink, S., & Keir, G. (2015). A framework for a sustainable approach to mine tailings management: Disposal strategies. Journal of Cleaner Production, 108, 1050-1062. https://doi.org/10.1016/j.jclepro.2015.07.139.
  • 2. Almeida, I. M. de, Jackson Filho, J. M., & Vilela, R. A. de G. (2019). Razoes para investigar a dimensao organizacional nas origens da catastrofe industrial da Vale em Brumadinho, Minas Gerais, Brasil. Cadernos de Saúde Pública, 35(4), https://doi.org/10.1590/0102-311x00027319.
  • 3. Almeida, C. A., Oliveira, A. F. de, Pacheco, A. A., Lopes, R. P., Neves, A. A., & Lopes Ribeiro de Queiroz, M. E. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Doce River basin - Brazil. Chemosphere, 209, 411-420. https://doi.org/10.1016/j.chemosphere.2018.06.071.
  • 4. Attari, M., Bukhari, S. S., Kazemian, H., & Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 5(1), 391-399. https://doi.org/10.1016/j.jece.2016.12.014.
  • 5. Botelho Junior, A. B., Dreisinger, D. B., & Espinosa, D. C. R. (2019). A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Mining, Metallurgy & Exploration, 36(1), 199-213. https://doi.org/10.1007/s42461-018-0016-8.
  • 6. Botelho Junior, A. B., Vicente, A. A., Espinosa, D. C. R., & Tenorio, J. A. S. (2019). Effect of iron oxidation state for copper recovery from nickel laterite leach solution using chelating resin. Separation Science and Technology. https://doi.org/10.1080/01496395.2019.1574828.
  • 7. Botelho Junior, A. B., Vicente, A. A., Espinosa, D. C. R., & Tenorio, J. A. S. (2019). Recovery of metals by ion exchange process using chelating resin and sodium dithionite. Journal of Materials Research and Technology, 8(5), 4464-4469. https://doi.org/10.1016/j.jmrt.2019.07.059.
  • 8. Departamento Nacional de Producao Mineral (2018). Informe mineral 1o/2018. Retrieved from http://www.anm.gov.br/dnpm/publicacoes/serie-estatisticas-eeconomia-mineral/informe-mineral/publicacoes-nacionais/informe_mineral_1_2018.pdf.
  • 9. Eduardo, L., Gomes, D. O., Barreto, L., Sa, F., Rodrigues, R., & Fraga, A. (2017). The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Marine Pollution Bulletin, 120(1-2), 28-36. https://doi.org/10.1016/j.marpolbul.2017.04.056.
  • 10. Fontes, W. C., Mendes, J. C., Da Silva, S. N., Peixoto, R. A. F., Carvalho, W., Castro, J., et al. (2016). Mortars for laying and coating produced with iron ore tailings from tailing dams. Construction and Building Materials, 112, 988-995. https://doi.org/10.1016/j.conbuildmat.2016.03.027.
  • 11. Grant, W. (2019). Brazil's Barao de Cocais waits as dam nearby at risk of collapse. Retrieved 23 November 2019 from https://www.bbc.com/news/world-latinamerica-48391767.
  • 12. Guerra, M. B. B., Teaney, B. T., Mount, B. J., Asunskis, D. J., Jordan, B. T., Barker, R. J., et al. (2017). Post-catastrophe analysis of the Fundao tailings dam failure in the Doce River system, southeast Brazil: Potentially toxic elements in affected soils. Water, Air, and Soil Pollution, 228(7), 252. https://doi.org/10.1007/s11270-017-3430-5.
  • 13. Inamuddin, & Luqman, M. (2012). Ion exchange technology I. Theory and materialsDordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1700-8.
  • 14. Izidoro, J. de C. (2013). Síntese e caracterização de zeólita pura obtida a partir de cinzas volantes de carvão. University of Sao Paulo.
  • 15. Izidoro, J.de C., Fungaro, D. A., Abbott, J. E., & Wang, S. (2013). Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel, 103(September), 827-834. https://doi.org/10.1016/j.fuel.2012.07.060.
  • 16. Izidoro, J.de C., Fungaro, D. A., Dos Santos, F. S., & Wang, S. (2012). Characteristics of Brazilian coal fly ashes and their synthesized zeolites. In: Fuel Processing Technology, 97, 38-44. https://doi.org/10.1016/j.fuproc.2012.01.009 January 2011.
  • 17. Izidoro, J.de C., Fungaro, D. A., & Wang, S. B. (2011). Zeolite synthesis from Brazilian coal fly ash for removal of Zn2+ and Cd2+ from water. Advanced Materials Research, 356-360. June 2014, 1900-1908 https://doi.org/10.4028/www.scientific.net/AMR.356-360.1900.
  • 18. Izidoro, J.de C., Miranda, S., Guilhen, S. N., Fungaro, D. A., & Wang, S. (2018). Treatment of coal ash landfill leachate using zeolitic materials from coal combustion by-products. Advanced Materials and Technologies for Environmental Applications, 2(1), 177-186.
  • 19. Jackson, E. (1986). Hydrometallurgical extraction and reclamation (1st ed.). Southampton: Ellis Horwood Limitedhttps://doi.org/10.1016/0304-386X(87)90057-0.
  • 20. Labonne, B. (2016). Mining dam failure: Business as usual? Extractive Industries and Society, 3(3), 651-652. https://doi.org/10.1016/j.exis.2016.03.010.
  • 21. Liu, R., & Poon, C. (2016). Effects of red mud on properties of self-compacting mortar. Journal of Cleaner Production, 135, 1170-1178. https://doi.org/10.1016/j.jclepro.2016.07.052.
  • 22. Luz, A. B. da, Sampaio, J. A., & Franca, S. C. A. (2010). Tratamento de minérios. CETEM (5a edição, Vol. 1 (Rio de Janeiro).
  • 23. Mallapur, V. P., & Oubagaranadin, J. U. K. (2017). A brief review on the synthesis of zeolites from hazardous wastes. Transactions - Indian Ceramic Society, 76(1), 1-13. https://doi.org/10.1080/0371750X.2016.1231086.
  • 24. Marta-Almeida, M., Mendes, R., Amorim, F. N., Cirano, M., & Dias, J. M. (2016). Fundao Dam collapse: Oceanic dispersion of River Doce after the greatest Brazilian environmental accident. Marine Pollution Bulletin, 112(1-2), 359-364. https://doi.org/10.1016/j.marpolbul.2016.07.039.
  • 25. Petrov, I., & Michalev, T. (2012). Synthesis of zeolite A: A review. Semantic scholar. (51, Book 9.1: 30-35). Retrieved 23 November 2019 from http://conf.uni-ruse.bg/bg/docs/cp12/9.1/9.1-5.pdf.
  • 26. Santamarina, J. C., Torres-Cruz, L. A., & Bachus, R. C. (2019). Why coal ash and tailings dam disasters occur. Science, 364(6440), 526-528. https://doi.org/10.1126/science.aax1927.
  • 27. Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G.U. L., et al. (2016). Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813-825. https://doi.org/10.1016/j.envpol.2016.08.005.
  • 28. Wibowo, E., Rokhmat, M., Sutisna, K., & Abdullah, M. (2017). Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination, 409, 146-156. https://doi.org/10.1016/j.desal.2017.01.026.
  • 29. Zagorodni, A. A. (2012). Ion exchange materials: Properties and applications, Vol. XXXIII Stockholm: Elsevier https://doi.org/10.1007/s13398-014-0173-7.2 First edit.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ac51304-e616-4eb1-b3e8-9fc15544f5f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.