PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Airborne Bacteria from Wastewater Treatment and Their Antibiotic Resistance: A Meta-Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The treatment of domestic and industrial wastewater is a source for a large number of airborne microorganisms, which can be released at the environment during mechanical aeration. A meta-analysis of up to 14 industrial and municipal treatment plants was performed to determine the bacterial count in bioaerosols, as well as antibiotic resistance, at different stages of the wastewater treatment (pretreatment, primary, secondary and tertiary treatment), in comparison with bacterial counts of the ambient air surrounding the treatment plants. The highest contamination of the air with microorganisms was observed in the raw sewage inlet and at the biological reactor. In most analyzes, the air in the wastewater treatment plant was characterized by a higher content of microorganisms than at the control point. Bioaerosols from water treatment might be an important source of antibiotic resistance genes, which can be transported considerable distances and can represent a potential risk to humans. Therefore, employees should recognize the health risks associated with the absence of personal protective equipment, such as masks or respirators.
Słowa kluczowe
Rocznik
Strony
205--214
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí „Manuel Félix López”, ESPAM – MFL, Calceta, Ecuador
autor
  • Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí „Manuel Félix López”, ESPAM – MFL, Calceta, Ecuador
autor
  • Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí „Manuel Félix López”, ESPAM – MFL, Calceta, Ecuador
autor
  • Instituto Nacional de Investigación en Salud Pública INSPI - Dr. Leopoldo Izquieta Pérez, Guayaquil, Ecuador
Bibliografia
  • 1. Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., Salamat M.K.F., Baloch Z. 2018. Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. DOI: 10.2147/IDR.S173867
  • 2. Bardi T., Pintado V., Gomez-Rojo M., Escudero-Sanchez R., Azzam Lopez A., Diez-Remesal Y., Martinez Castro N., Ruiz-Garbajosa P., Pestaña D. 2021. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. European Journal of Clinical Microbiology & Infectious Diseases, 40(3), 495–502. DOI: 10.1007/s10096–020–04142-w
  • 3. Bruni E., Simonetti G., Bovone B., Casagrande C., Castellani F., Riccardi C., Pomata D., Di Filippo P., Federici E., Buiarelli F., Uccelletti D. 2019. Evaluation of Bioaerosol Bacterial Components of a Wastewater Treatment Plant Through an Integrate Approach and In Vivo Assessment. International Journal of Environmental Research and Public Health, 17(1), 273. DOI: 10.3390/ijerph17010273
  • 4. Burdsall A.C., Xing Y., Cooper C.W., Harper W.F. 2021. Bioaerosol emissions from activated sludge basins: Characterization, release, and attenuation. Science of The Total Environment, 753, 141852. DOI: 10.1016/j.scitotenv.2020.141852
  • 5. Calero-Cáceres W., Ye M., Balcázar J.L. 2019. Bacteriophages as Environmental Reservoirs of Antibiotic Resistance. Trends in Microbiology, 27(7), 570–577. DOI: 10.1016/j.tim.2019.02.008
  • 6. Crofts T.S., Gasparrini A.J., Dantas G. 2017. Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Microbiology, 15(7), 422–434. DOI: 10.1038/nrmicro.2017.28
  • 7. DasSarma P., Antunes A., Simões M.F., DasSarma S. 2020. Earth’s Stratosphere and Microbial Life. Current Issues in Molecular Biology, 38(1), 197–244.
  • 8. Dehghani M., Sorooshian A., Ghorbani M., Fazlzadeh M., Miri M., Badiee P., Parvizi A., Ansari M., Baghani A.N., Delikhoon M. 2018. Seasonal Variation in Culturable Bioaerosols in a Wastewater Treatment Plant. Aerosol and Air Quality Research, 18(11), 2826–2839. DOI: 10.4209/aaqr.2017.11.0466
  • 9. Ding J., Zhu D., Hong B., Wang H.T., Li G., Ma Y.B., Tang Y.T., Chen Q.L. 2019. Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. Environment International, 124, 145–152. DOI: 10.1016/j.envint.2019.01.017
  • 10. Elsamadony M., Fujii M., Miura T., Watanabe T. 2021. Possible transmission of viruses from contaminated human feces and sewage: Implications for SARS-CoV-2. Science of The Total Environment, 755, 142575. DOI: 10.1016/j.scitotenv.2020.142575
  • 11. Fathi S., Hajizadeh Y., Nikaeen M., Gorbani M. 2017. Assessment of microbial aerosol emissions in an urban wastewater treatment plant operated with activated sludge process. Aerobiologia, 33(4), 507–515. DOI: 10.1007/s10453–017–9486–2
  • 12. Forsberg K.J., Reyes A., Wang B., Selleck E.M., Sommer M.O.A., Dantas G. 2012. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science, 337(6098), 1107–1111. DOI: 10.1126/science.1220761
  • 13. Gangamma S., Patil R.S., Mukherji S. 2011. Characterization and Proinflammatory Response of Airborne Biological Particles from Wastewater Treatment Plants. Environmental Science & Technology, 45(8), 3282–3287. DOI: 10.1021/es103652z
  • 14. Gong J., Qi J., Beibei E., Yin Y., Gao D. 2020. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environmental Pollution, 257, 113485. DOI: 10.1016/j.envpol.2019.113485
  • 15. Górny R.L. 2020. Microbial Aerosols: Sources, Properties, Health Effects, Exposure Assessment–A Review. KONA Powder and Particle Journal, 37(0), 64–84. DOI: 10.14356/kona.2020005
  • 16. Han I. & Yoo K. 2020. Metagenomic Profiles of Antibiotic Resistance Genes in Activated Sludge, Dewatered Sludge and Bioaerosols. Water, 12(6), 1516. DOI: 10.3390/w12061516
  • 17. Hernando-Amado S., Coque T.M., Baquero F., Martínez J.L. 2019. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 4(9), 1432–1442. DOI: 10.1038/s41564–019–0503–9
  • 18. Hsiao T.-C., Lin A.Y.-C., Lien W.-C., Lin Y.-C. 2020. Size distribution, biological characteristics and emerging contaminants of aerosols emitted from an urban wastewater treatment plant. Journal of Hazardous Materials, 388, 121809. DOI: 10.1016/j.jhazmat.2019.121809
  • 19. Katsivela E., Latos E., Raisi L., Aleksandropoulou V., Lazaridis M. 2017. Particle size distribution of cultivable airborne microbes and inhalable particulate matter in a wastewater treatment plant facility. Aerobiologia, 33(3), 297–314. DOI: 10.1007/s10453–016–9470–2
  • 20. Korzeniewska E. & Harnisz M. 2018. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Science of The Total Environment, 639, 304–315. DOI: 10.1016/j.scitotenv.2018.05.165
  • 21. Kowalski M., Wolany J., Pastuszka J.S., Płaza G., Wlazło A., Ulfig K., Malina A. 2017. Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 14(10), 2181–2192. DOI: 10.1007/s13762–017–1314–2
  • 22. Lee B.U. 2011. Life Comes from the Air: A Short Review on Bioaerosol Control. Aerosol and Air Quality Research, 11(7), 921–927. DOI: 10.4209/aaqr.2011.06.0081
  • 23. Li P., Li L., Wang Y., Zheng T., Liu J. 2021. Characterization, factors, and UV reduction of airborne bacteria in a rural wastewater treatment station. Science of The Total Environment, 751, 141811. DOI: 10.1016/j.scitotenv.2020.141811
  • 24. Liang Z., Yu Y., Ye Z., Li G., Wang W., An T. 2020. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human. Environment International, 143, 105934. DOI: 10.1016/j.envint.2020.105934
  • 25. Lou M., Liu S., Gu C., Hu H., Tang Z., Zhang Y., Xu C., Li F. 2021. The bioaerosols emitted from toilet and wastewater treatment plant: A literature review. Environmental Science and Pollution Research, 28(3), 2509–2521. DOI: 10.1007/s11356–020–11297–8
  • 26. Małecka-Adamowicz M., Kubera Ł., Jankowiak E., Dembowska E. 2019. Microbial diversity of bioaerosol inside sports facilities and antibiotic resistance of isolated Staphylococcus spp. Aerobiologia, 35(4), 731–742. DOI: 10.1007/s10453–019–09613-y
  • 27. Manaia C.M., Rocha J., Scaccia N., Marano R., Radu E., Biancullo F., Cerqueira F., Fortunato G., Iakovides I.C., Zammit I., Kampouris I., Vaz-Moreira I., Nunes O.C. 2018. Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324. DOI: 10.1016/j.envint.2018.03.044
  • 28. Michałkiewicz M. 2018. Comparison of wastewater treatment plants based on the emissions of microbiological contaminants. Environmental Monitoring and Assessment, 190(11), 640. DOI: 10.1007/s10661–018–7035–2
  • 29. Moran-Zuloaga D., Merchan-Merchan W., Rodríguez-Caballero E., Hernick P., Cáceres J., Cornejo M.H. 2021. Overview and Seasonality of PM10 and PM2.5 in Guayaquil, Ecuador. Aerosol Science and Engineering. DOI: 10.1007/s41810–021–00117–2
  • 30. Nair A.T. 2021. Bioaerosols in the landfill environment: An overview of microbial diversity and potential health hazards. Aerobiologia. DOI: 10.1007/s10453–021–09693–9
  • 31. Nesme J. & Simonet P. 2015. The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria: The soil resistome. Environmental Microbiology, 17(4), 913–930. DOI: 10.1111/1462–2920.12631
  • 32. Niazi S., Hassanvand M.S., Mahvi A.H., Nabizadeh R., Alimohammadi M., Nabavi S., Faridi S., Dehghani, A., Hoseini M., Moradi-Joo M., Mokamel A., Kashani H., Yarali N., Yunesian M. 2015. Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East. Environmental Science and Pollution Research, 22(20), 16014–16021. DOI: 10.1007/s11356–015–4793-z
  • 33. Nnadozie C.F. & Odume O.N. 2019. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environmental Pollution, 254, 113067. DOI: 10.1016/j.envpol.2019.113067
  • 34. Osińska A., Jachimowicz P., Niestępski S., Harnisz M., Korzeniewska E. 2021. The effects of season and processing technology on the abundance of antibiotic resistance genes in air samples from municipal wastewater treatment and waste management plants. Environment Protection Engineering, 47(1). DOI: 10.37190/epe210108
  • 35. Paśmionka I. 2020. Evaluation of microbiological quality of atmospheric air in a selected sewage treatment plant in Lesser Poland. Aerobiologia, 36(2), 249–260. DOI: 10.1007/s10453–020–09627-x
  • 36. Pazda M., Kumirska J., Stepnowski P., Mulkiewicz E. 2019. Antibiotic resistance genes identified in wastewater treatment plant systems – A review. Science of The Total Environment, 697, 134023. DOI: 10.1016/j.scitotenv.2019.134023
  • 37. Perry J.A., Westman E.L., Wright G.D. 2014. The antibiotic resistome: What’s new? Current Opinion in Microbiology, 21, 45–50. DOI: 10.1016/j.mib.2014.09.002
  • 38. Robertson S., Douglas P., Jarvis D., Marczylo E. 2019. Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: A systematic review update. International Journal of Hygiene and Environmental Health, 222(3), 364–386. DOI: 10.1016/j.ijheh.2019.02.006
  • 39. Robotto A., Quaglino P., Lembo D., Morello M., Brizio E., Bardi L., Civra A. 2021. SARS-CoV-2 and indoor/outdoor air samples: A methodological approach to have consistent and comparable results. Environmental Research, 195, 110847. DOI: 10.1016/j.envres.2021.110847
  • 40. Rocha-Melogno L., Ginn O., Bailey E.S., Soria F., Andrade M., Bergin M.H., Brown J., Gray G.C., Deshusses M.A. 2020. Bioaerosol sampling optimization for community exposure assessment in cities with poor sanitation: A one health cross-sectional study. Science of The Total Environment, 738, 139495. DOI: 10.1016/j.scitotenv.2020.139495
  • 41. Ruiz-Gil T., Acuña J.J., Fujiyoshi S., Tanaka D., Noda J., Maruyama F., Jorquera M.A. 2020. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156. DOI: 10.1016/j.envint.2020.106156
  • 42. Sánchez-Monedero M.A., Aguilar M.I., Fenoll R., RoigA. 2008. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Research, 42(14), 3739–3744. DOI: 10.1016/j.watres.2008.06.028
  • 43. Smets W., Moretti S., Denys S., Lebeer S. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139, 214–221. DOI: 10.1016/j.atmosenv.2016.05.038
  • 44. Song L., Wang C., Jiang G., Ma J., Li Y., Chen H., Guo J. 2021. Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Environment International, 154, 106559. DOI: 10.1016/j.envint.2021.106559
  • 45. Sultan I., Rahman S., Jan A.T., Siddiqui M.T., Mondal A.H., Haq Q.M.R. 2018. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Frontiers in Microbiology, 9, 2066. DOI: 10.3389/fmicb.2018.02066
  • 46. Teixeira J.V., Cecílio P., Gonçalves D., Vilar V.J.P., Pinto E., Ferreira H.N. 2016. Multidrug-resistant Enterobacteriaceae from indoor air of an urban wastewater treatment plant. Environmental Monitoring and Assessment, 188(7), 388. DOI: 10.1007/s10661–016–5382–4
  • 47. Tian J., Yan C., Nasir Z.A., Alcega S.G., Tyrrel S., Coulon F. 2020. Real time detection and characterisation of bioaerosol emissions from wastewater treatment plants. Science of The Total Environment, 721, 137629. DOI: 10.1016/j.scitotenv.2020.137629
  • 48. Wright G.D. 2007. The antibiotic resistome: The nexus of chemical and genetic diversity. Nature Reviews Microbiology, 5(3), 175–186. DOI: 10.1038/nrmicro1614
  • 49. Xu P., Zhang C., Mou X., Wang X.C. 2020. Bioaerosol in a typical municipal wastewater treatment plant: Concentration, size distribution, and health risk assessment. Water Science and Technology, 82(8), 1547–1559. DOI: 10.2166/wst.2020.416
  • 50. Yadav S.K., Saxena S., Kumari H., Chakrawarti M.K., Singh M., Mitra S., Rajput S., Mukhopadhyay K. 2020. Isolation and Characterization of Bacteria in Water and Air Sample from Sewage Treatment Plant. ENVIS RP: Geodiversity & Impact on Environment, 24(3), 16.
  • 51. Yazdanbakhsh A., Ghazi M., Sahlabadi F., Teimouri F. 2020. Data on airborne bacteria and fungi emission from a conventional hospital wastewater treatment plant. Data in Brief, 28, 105019. DOI: 10.1016/j.dib.2019.105019
  • 52. Zhou L. & Mancl K. 2007. Calculating Loadings Rates for Design of Small Flow Onsite Wastewater Treatment Systems. 2.
  • 53. Zieliński W., Korzeniewska E., Harnisz M., Drzymała J., Felis E., Bajkacz S. 2021. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes – An epidemiological threat to workers and environment. Environment International, 156, 106641. DOI: 10.1016/j.envint.2021.106641
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ac4fbe1-9ed8-4ade-ae95-bd90cac0d81d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.