PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Succinic acid biosynthesis by Corynebacterium glutamicum

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Succinic acid is one of the most desirable raw materials. Currently, it is obtained mainly by hydrogenation of maleic acid derived from the C4 petroleum fraction. Corynebacterium glutamicum is considered as a possible microbiological producer of this acid. Under oxygen deprivation conditions this bacteria secretes L-lactate, succinate and acetate. Succinic acid is an intermediate of the Krebs cycle, in order to achieve high efficiency of its biosynthesis, metabolic engineering of C. glutamicum is required. The best producers described so far are C. glutamicum R ΔldhA pCRA717 (146 g/L) and C. glutamicum BOL-3/pAN6-gap (133 g/L). Succinic acid biosynthesis can also be achieved under aerobic conditions. C. glutamicum ZX1 (pEacsAgltA) produces aerobically 21.7 g/L of succinate. Genetic engineering is also necessary to enable the use of low-cost, waste carbon source such as glycerol or starch. The paper also presents and discusses examples of modifications of bacterial cells, allowing them to use these two carbon sources.
Rocznik
Strony
25--43
Opis fizyczny
Bibliogr. 85 poz.
Twórcy
  • Institute of Fermentation Technology and Microbiology Lodz University of Technology Wólczańska 171/173, 90-924 Lodz, Poland
autor
  • Institute of Fermentation Technology and Microbiology Lodz University of Technology Wólczańska 171/173, 90-924 Lodz, Poland
Bibliografia
  • 1. Werpy T, Petersen G. Top value added chemicals from biomass.Volume 1,Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy. Energy Efficiency and Renewable Energy. Washington, DC 2004.
  • 2. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A. Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 2008, 31:647-654.
  • 3. Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's ‘Top 10’ revisited. Green Chem 2010, 12:539-554.
  • 4. Carole TM, Pellegrino J, Paster MD. Opportunities in the industrial biobased products industry. Appl Biochem Biotechnol 2004, 113-116:871-885.
  • 5. McKinlay JB, Vieille C, Zeikus JG. Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 2007, 76:727-740.
  • 6. Patel MK, Crank M, Dornburg V, Hermann B, Roes L, Hüsing B. The BREW Project – Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. Utrecht University – Department of Science, Technology and Society (STS) /Copernicus Institute, Utrecht, the Netherlands 2006.
  • 7. Zeikus JG, Jain MK, Elankovan P. Biotechnology of succinic acid production and markets for deriving industrial products. Appl Environ Microbiol 1999, 51:545-552.
  • 8. Song H, Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 2006, 39:352-361.
  • 9. Taylor P. Chemistry World: Biosuccinic acid ready for take off? Advancing The Chemical Science 2010, Vol. 7 No. 1.
  • 10. Higson A. Renewable chemicals fact sheet. Platform Chemicals 2013, 13.
  • 11. Hager S. Myriant achieves major milestone: successful start-up at flagship bio-succinic acid plant in Lake Providence, LA [Online] myriant.com 2013. Available at: http://www.myriant.com/media/press-releases/myriant-achieves-successful- start-up-at-lake-providence-la-plant.cfm
  • 12. Guettler MV, Jain MK, Rumler D. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US Patent 5, 573, 931.
  • 13. Zheng P, Zhang K, Yan Q, Xu Y, Sun Z. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. J Ind Microbiol Biotechnol 2013, 40:831-40.
  • 14. Jiang M, Xu R, Xi YL, Zhang JH, Dai WY, Wan YJ, Chen KQ, Wei P. Succinic acid production from cellobiose by Actinobacillus succinogenes. Bioresour Technol 2013, 135:469-74.
  • 15. Jiang M, Dai W, Xi Y, Wu M, Kong X, Ma J, Zhang M, Chen K, Wei P. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113. Bioresour Technol 2014, 153:327-32.
  • 16. Jiang M, Dai W, Xi Y, Wu M, Kong X, Ma J, Zhang M, Chen K, Wei P. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113. Bioresour Technol 2014, 153:327-32.
  • 17. Nghiem NP, Davison BH, Suttle BE, Richardson GR. Production of succinic acid by Anaerobiospirillum succiniciproducens. Appl Biochem Biotechnol 1997, 63-65:565-76.
  • 18. Meynial-Salles I, Dorotyn S, Soucaille P. A new process for the continuous production of succinic acid from glucose at high yield, titer and productivity. Biotechnol Bioeng 2008, 99:129-35.
  • 19. Lee PC, Lee WG, Lee SY, Chang HN. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 2001, 72:41-8.
  • 20. Lee PC, Lee SY, Chang HN. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system. J Microbiol Biotechnol 2008,18:1252-6.
  • 21. Lee PC, Lee SY, Chang HN. Succinic acid production by Anaerobiospirillum succiniciproducens ATCC 29305 growing on galactose, galactose/glucose, and galactose/lactose. J Microbiol Biotechnol 2008, 18:1792-6.
  • 22. Lee SY, Kim JM, Song H, Lee JW, Kim TY, Jang YS. From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Appl Microbiol Biotechnol 2008, 79:11-22.
  • 23. Oh IJ, Kim DH, Oh EK, Lee SY, Lee J. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol 2009, 19:167-71.
  • 24. Oh IJ, Lee HW, Park CH, Lee SY, Lee J. Succinic acid production from continuous fermentation process using Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol 2008, 18:908-12.
  • 25. Dominguez H, Nezondet C, Lindley ND, Cocaingn M. Modified carbon flux during oxygen limited growth of Corynebacterium glutumicum and the consequences for amino acid overproduction. Biotechnol Lett 1993, 15:449-454.
  • 26. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 2004, 7:182-96.
  • 27. Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2005, 68:475-480.
  • 28. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicumstrain. Appl Microbiol Biotechnol 2008, 81:459-464.
  • 29. Litsanov B, Kabus A, Brocker M, Bott M. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 2012, 5:116-128.
  • 30. Litsanov B, Brocker M, Bott M. Towards homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic succinate production from glucose and formate. Appl Environ Microbiol 2012, 78:3325-3337.
  • 31. Litsanov B, Brocker M, Bott M. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 2012, 6:189-95.
  • 32. Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicumin anaerobic conditions. AMB Express 2013, 3:72.
  • 33. Litsanov B, Brocker M, Bott M. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 2013, 6:189-95.
  • 34. Jeon JM, Rajesh T, Song E, Lee HW, Lee HW, Yang YH. Media optimization of Corynebacterium glutamicum for succinate production under oxygen-deprived condition. J Microbiol Biotechnol 2013, 23:211-7.
  • 35. Wieschalka S, Blombach B, Bott M, Eikmanns BJ. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 2013, 2:87-102.
  • 36. Wang C, Zhang H, Cai H, Zhou Z, Chen Y, Chen Y, Ouyang P. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum. Appl Biochem Biotechnol. 2014,172:340-50.
  • 37. Zhu N, Xia H, Yang J, Zhao X, Chen T. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Biotechnol Lett 2014, 36:553-560.
  • 38. Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A. Direct production of organic acids from starch by cell surface engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 2013, 3:72.
  • 39. Vemuri GN, Eiteman MA, Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 2002, 28:325-32.
  • 40. Lin H, Bennett GN, San KY. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 2005, 7:116-127.
  • 41. Li Y, Li M, Zhang X, Yang P, Liang Q, Qi Q. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresour Technol 2013, 149:333-340.
  • 42. van Heerden CD, Nicol W. Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics. Microb Cell Fact 2013, 17;12:80.
  • 43. Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 2010, 1;107:673-82.
  • 44. Kamzolova SV, Vinokurova NG, Dedyukhina EG, Samoilenko VA, Lunina JN, Mironov AA, Allayarov RK, Morgunov IG. The peculiarities of succinic acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 2014, 98:4149-57.
  • 45. Kinoshita S, Udaka S, Shimono M. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 1957, 3193-205.
  • 46. Kinoshita S. A Short History of the Birth of the Amino Acid Industry in Japan. In: Handbook of Corynebacterium glutamicum. Eggeling L, Bott M Eds.; CRC Press Taylor & Francis Group, Boca Raton, FL, U.S., 2005, pp. 9-36.
  • 47. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krӓmer R, Linke B, McHardy AC, Meyer F, Mӧckel B, Pfefferle W, Pühlerf A, Rey DA, Rückert Ch, Rupp O, Sahm H, Wendisch VF, Wiegrӓbe I, Tauch A. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 2003, 104:5-25.
  • 48. Ikeda M, Nakagawa S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 2003, 62:99-109.
  • 49. Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 2012, 78:3325-37.
  • 50. Okino S, Suda M, Fujikura K, Inui M, Yukawa H. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2008, 78:449-54.
  • 51. Wieschalka S, Blombach B, Eikmanns BJ. Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 2012, 94:449-59.
  • 52. Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH. Disruption of genes for the enhanced biosynthesis of alpha-ketoglutarate in Corynebacterium glutamicum. Can J Microbiol 2012, 58:278-286.
  • 53. Krause FS, Blombach B, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 2010, 76:8053-8061.
  • 54. Yokota and A, Lindley ND. Central Metabolism: Sugar Uptake and Conversion. In: Handbook of Corynebacterium glutamicum. Eggeling L, Bott M Eds.; CRC Press Taylor & Francis Group, Boca Raton, FL, U.S., 2005, pp. 215-240.
  • 55. Eikmanns B. Central metabolism: Tricarboxylic Acid Cycle and anaplerotic reactions. In: Handbook of Corynebacterium glutamicum. Eggeling L, Bott M Eds.; CRC Press Taylor & Francis Group, Boca Raton, FL, U.S., 2005, pp. 241-277.
  • 56. Wittmann C, De Graaf AA. Metabolic Flux Analysis in Corynebacterium glutamicum. In Handbook of Corynebacterium glutamicum. Eggeling L, Bott M Eds.; CRC Press Taylor & Francis Group, Boca Raton, FL, U.S., 2005, pp. 277-305.
  • 57. Danshina PV, Schmalhausen EV, Avetisyan AV, Muronetz VI. Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis. IUBMB Life 2001, 51:309-314.
  • 58. Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S. A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 2006, 33:610-615.
  • 59. Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G. Promoters of Corynebacterium glutamicum. J Biotechnol 2003, 104:311-23.
  • 60. Galkin A, Kulakova L, Tishkov V, Esaki N, Soda K. Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol 1995, 44:479-483.
  • 61. Zaldivar J, Ingram LO. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 1999, 66:203-210.
  • 62. Yasuda K, Jojima T, Suda M, Okino S, Inui M, et al. Analyses of the acetate- producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 2007, 77:853-860.
  • 63. Veit A, Rittmann D, Georgi T, Youn J-W, Eikmanns BJ, et al. Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum. J Biotechnol 2009, 140:75-83.
  • 64. Zhu N, Xia H, Wang Z, Zhao X, Chen T. Engineering of acetate recycling and citrate synthase to improve aerobic succinate pxroduction in Corynebacterium glutamicum. PLoSOne 2013, 8:60659.
  • 65. Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicumin anaerobic conditions. AMB Express 2013, 3:72.
  • 66. Song Y, Matsumoto K, Tanaka T, Kondo A, Taguchi S. Single-step production of polyhydroxybutyrate from starch by using alpha-amylase cell-surface displaying system of Corynebacterium glutamicum. J Biosci Bioeng 2013, 11:12-4.
  • 67. Yao W, Chu C, Deng X, Zhang Y, Liu M. Display of alpha-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch. Arch Microbiol 2009, 191:751-759.
  • 68. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 2009, 82:115-121.
  • 69. Tateno T, Fukuda H, Kondo A. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 2007, 77:533-541.
  • 70. Brabetz W, Liebl W, Schleifer KH. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch Microbiol 1991;155:607-12.
  • 71. Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 2004, 70:2861-6.
  • 72. Chen T, Zhu N, Xia H. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Bioresour Technol 2014, 151:411-4.
  • 73. Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl Environ Microbiol 2012, 78:5831-8.
  • 74. Schneider J, Niermann K, Wendisch VF. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 2011, 10:1542-1543.
  • 75. Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2008, 77:1053-1062.
  • 76. Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 2013, 8:557-70.
  • 77. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 2006, 72:3418-28.
  • 78. Kang MK, Lee J, Um Y, Lee TS, Bott M, Park SJ, Woo HM. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl Microbiol Biotechnol 2014, 98:5991-6002.
  • 79. Sasaki M, Jojima T, Inui M, Yukawa HA. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 2008, 81:691-699.
  • 80. Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A. Direct L-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl Microbiol Biotechnol 2013, 97:7165-72.
  • 81. Kotrba P, Inui M, Yukawa HA. Single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 2003, 149:1569-1580.
  • 82. Teramoto H, Shirai T, Inui M, Yukawa H. Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Appl Environ Microbiol 2008, 74:5290-5296.
  • 83. Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 2009, 191:5480-5488.
  • 84. Rittmann D, Lindner SN, Wendisch VF. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 2008, 74:6216-22.
  • 85. Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 2013, 145:254-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ac22ec0-2aa6-4309-9577-43a5a2664a8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.