Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Single point incremental Forming (SPIF) is a novel and practical approach for quickly prototyping and producing small batch sheet metal components. Predicting the impact of sheet thickness in the SPIF process is vital for assessing forming limits, understanding material behavior, optimizing tool design and path, and improving material utilization. It enables engineers to make informed decisions and optimize the process for enhanced formability and part quality. In this work, the numerical simulation of formability of the hyperbolic truncated pyramid with varying wall angles from 20° to 80° by the implementation of the “Hooputra Ductile Damage (HDD) model” in Abaqus/Explicit with the version of (CAE, 2017) has been conducted for brass of CuZn37 to study and predict the impact of the material's sheet thickness on its formability in SPIF process. In addition to that, the effect of sheet thickness on three other output responses: Von Mises stress, equivalent plastic strain, and contact pressure, have been examined. The results demonstrated the excellent success of the Hooputra Ductile Damage model in simulating the formability and capturing the fracture in the SPIF process with a total error ratio of approximately 1.91%. The results also showed that increasing sheet thickness from 0.4 – 1.4 mm increases formability, Von Mises stress, and contact pressure while leading to decreases and then increases the equivalent plastic strain.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
95--110
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Production Engineering and Metallurgy Department, University of Technology, Al-Sena’ah Str., Karadah, 10066, Baghdad, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology, Al-Sena’ah Str., Karadah, 10066, Baghdad, Iraq
autor
- AlFarahidi University, Baghdad, 00965, Iraq
Bibliografia
- 1. Grimm, T.J., Colombini, F., and Ragai, I., "Numerical investigation of step size effect on formability of 2024-T3 aluminum in incremental forming," J. Manuf. Mater. Process, 2023, 7(70). https://doi.org/10.3390/jmmp7020070.
- 2. Habeeb, H.A., Jweeg, M.J., and Khleif, A.A., "Effect of the single-point incremental forming process parameters on the surface roughness of aluminum alloy Al 2024-O draw pieces," Advances in Science and Technology Research Journal, 2023, 17(6), 155–163. https://doi.org/10.12913/22998624/174364.
- 3. Ghazi, S.K., Bedana, A.S., and Salloomb, Y., "Investigating the impact of process parameters on thinning and formability in aluminum alloy AA 1050 incremental sheet metal forming," Engineering and Technology Journal, 2023, 41(12), 1653–1659. https://doi.org/10.30684/etj.2023.143119.1561.
- 4. Krasowski, B., Kubit, A., Trzepieciński, T., Dudek, K., Slota, J., "Application of X-ray diffraction for residual stress analysis in truncated cones made by incremental forming," Advances in Science and Technology Research Journal, 2020, 14(2), 103–111. https://doi.org/10.12913/22998624/118829.
- 5. Gatea, S., Ou, H., and McCartney, G., "Review on the influence of process parameters in incremental sheet forming," Int. J. Adv. Manuf. Techn., 2016, 87(1–4), 479–499. https://doi.org/10.1007/s00170-016-8426-6.
- 6. Barrak, O.S., Saad, M.L., Mezher, M.T., Hussein, S.K., and Hamzah, M.M., "Joining of double pre-holed aluminum alloy AA6061-T6 to polyamide PA using hot press technique," IOP Conference Series: Materials Science and Engineering, 2020, 881(1). https://doi.org/10.1088/1757-899X/881/1/012062.
- 7. Ji, Y.H., and Park, J.J., "Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures," Transactions of Nonferrous Metals Society of China, 2008, 18, 165–169. https://doi.org/10.1016/S1003-6326(10)60195-1.
- 8. Oleksik, V., Pascu, A., Deac, C., Fleacă, R., Bologa, O., and Racz, G., "Experimental study on the surface quality of the medical implants obtained by single point incremental forming," Int. J. Mater. Form, 2010, 3(1), 935–938. https://doi.org/10.1007/s12289-010-0922-x.
- 9. Habeeb, H.A., Jweeg, M.J., Khleif, A.A., "Investigation of the Effect of SPIF Parameters on the Thickness of Al 2024 Alloy," Engineering and Technology Journal, 2023, 41(12), 1627–1637. https://doi.org/10.30684/etj.2023.143718.1604.
- 10. Haji Aboutalebi, H., and Banihashemi, A., "Numerical estimation and practical validation of Hooputra’s ductile damage parameters," Int. J. Adv. Manuf. Tech., 2014, 75, 1701–1710. https://doi.org/10.1007/s00170-014-6275-8.
- 11. Kolmogorov, W.L., "Spannungen Deformationen Bruch," Metallurgija, 1970, 230–235.
- 12. Gatea, S., Ou, H., Lu, B., and McCartney, G., "Modelling of ductile fracture in single point incremental forming using a modified GTN model," Engineering Fracture Mechanics, 2017, 186, 59–79. https://doi.org/10.1016/j.engfracmech.2017.09.021.
- 13. Khan, S., and Pradhan, S., "Experimentation and FE simulation of single point incremental forming," Materials Today Proceedings, 2019, 27(4). https://doi.org/10.1016/j.matpr.2019.09.123.
- 14. Sureshkumar, D., and Ethiraj, N., "Experimental and finite element analysis of single stage single point incremental forming," International Journal of Engineering, 2021, 34(10), 2259–2265. https://doi.org/10.5829/ije.2021.34.10a.07.
- 15. More, S., Kumar, A., and Narasimhan, K., "Parameter identification of GTN damage model using response surface methodology for single point incremental sheet forming of IF steel," Advances in Materials and Processing Technologies, 2021, 8(2), 1753–1768. https://doi.org/10.1080/2374068X.2021.1874770.
- 16. Campanella, D., Buffa, G., Lo Valvo, E., and Fratini, L., "A numerical approach for the modelling of forming limits in hot incremental forming of AZ31 magnesium alloy," The International Journal of Advanced Manufacturing Technology, 2021, 114, 3229–3239. https://doi.org/10.1007/s00170-021-07059-6.
- 17. Zhang, K., Yue, Z.M., Su, C.J., Wang, R., and Badreddine, H., "Modelling of ductile damage in single point incremental forming process using enhanced CDM model," IOP Conf. Series: Materials Science and Engineering, The 19th International Conference on Metal Forming, 2022, 1270. https://doi.org/10.1088/1757-899X/1270/1/012022.
- 18. Annual Book of ASTM Standards, Library of Congress Catalog Card Number: 83-641658, Printed in Baltimore, MD, USA, 2010.
- 19. Jagota, V., Sethi, A.P.S., and Kumar, K., "Finite element method: An overview," Walailak Journal of Science and Technology (WJST), 2013, 10(1), 1–8. https://doi.org/10.2004/wjst.v10i1.499.
- 20. Gatea, S., and Ou, H., "Experimental testing and numerical modelling of ductile fracture of PEEK in incremental sheet forming process," Material Research Proceedings, 2024, 41, 1596–1605. https://doi.org/10.21741/9781644903131-177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7abe02c1-264c-4fb5-89dc-9b105f6833ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.