Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ struktury geometrycznej powierzchni tarcz stalowych na tarcie i zużycie frettingowe
Języki publikacji
Abstrakty
Fretting tests were performed using an Optimol SRV5 tribotester in a ball-on-flat scheme. Balls from 100Cr6 steel of 60 HRC hardness and diameters of 10 mm co-acted with discs from 42CrMo4 steel of 47 HRC hardness under dry gross fretting conditions. Tests were performed at 30°C and 25–35% relative humidity, and the number of cycles was 18000. During each test, the normal load was kept constant. Six sets of experiments were conducted. Discs had different surface textures as the result of machining. It was found that the lowest coefficients of friction were obtained for anisotropic surfaces when ball movements were perpendicular to main disc texture directions.
W badaniach zastosowano tester tribologiczny Optimol SRV5. Kulka ze stali 100Cr6 o twardości 60 HRC kontaktowała się z tarczą o średnicy 10 mm wykonaną ze stali 42CrMo4 o twardości 47 HRC w warunkach frettingu. Temperatura wynosiła 30°C, wilgotność względna 25–35% przy liczbie cykli równej 18000. Tarcze charakteryzowały się zróżnicowaną strukturą geometryczną powierzchni uzyskaną w wyniku obróbki. Najmniejsze współczynniki tarcia osiągnięto, kiedy ruch kulki odbywał się prostopadle do głównego kierunku ukształtowania powierzchni tarczy.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
39--48
Opis fizyczny
Bibliogr. 28 poz., tab., wz.
Twórcy
autor
- Heli-One, 36-102 Jasionka 947, Poland
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics
Bibliografia
- 1. Fouvry S., Kapsa Ph., Vincent L.: Analysis of sliding behavior for fretting loading: Determination of transition criteria, Wear 185 (1995), 21–46.
- 2. Vingsbo O., Soerberg S.: On fretting maps, Wear 126 (1988), 131–147.
- 3. Zhou Z. R., Nakazawa S., Zhu M. H., Maruyama N., Kapsa Ph., Vincent L.: Progress in fretting maps. Tribology International 39 (2006), 1068–1073.
- 4. Varenberg M., Etsion I., Halperin G.: Slip index: a new unified approach to fretting, Tribology Letters 17 (2004), 569–573.
- 5. Varenberg M., Etsion I., Altus E.: Theoretical substantiation of the slip index approach to fretting, Tribology Letters 19 (2005), 263–264.
- 6. Fouvry S., Paulin C., Liskiewicz T.: Application of an energy wear approach to quantify fretting contact durabiliy: Introduction of a wear energy capacity concept, Tribology International 40 (2007), 1428–1440.
- 7. Varenberg M., Halperin G., Etsion I.: Different aspects of the role of wear debris in fretting wear. Wear 252 (2002), 902–910.
- 8. Ding J., McColl I. R., Leen S. B., Shipway P. H.: A finite element based approach to simulating the effects of debris on fretting wear, Wear 26 (2007), 481–491.
- 9. Iwabuchi A.: The role of oxide particles in the fretting wear of mild steel, Wear 151 (1991), 337–344.
- 10. Diomidis N., Mischler S.: Third body effects on friction and wear during fretting of steel contacts, Tribology International 44 (2011), 1452–1460.
- 11. Hu Q., McColl I. R., Harris S. J., Waterhouse R. B.: The role of debris in the fretting wear of a SiC reinforced aluminium alloy matrix composite, Wear 245 (2000), 10–21.
- 12. Berthier Y., Vincent L., Godet M.: Fretting fatigue and fretting wear, Tribology International 22 (1989), 235–242.
- 13. Lemm J. D., Warmuth A. R., Pearson S. R, Shipway P. H.: The influence of surface hardness on the fretting wear of steel pairs – Its role in debris retention in the contac, Tribology International 81 (2015), 258–266.
- 14. Ohmae N., Tsukizoe T.: The effect of slip amplitude on fretting, Wear 27 (1974), 281–294.
- 15. Li J., Lu Y. H.: Effects of displacement amplitude on fretting wear behaviors and mechanism of Inconel 600 Alloy. Wear 304 (2013), 223–230.
- 16. Toth L.: The investigation of the steady stage of steel fretting, Wear 20 (1972), 277–286.
- 17. Soderberg S., Bryggman U., McCullough T.: Frequency effects in fretting wear, Wear 110 (1986), 19–34.
- 18. Kayanba T., Iwabuchi A.: Effect of hardness of hardened steel and the action of oxides on fretting wear, Wear 66 (1981), 27–41.
- 19. Ramesh R., Gnanamoorthy R.: Effect of hardness on fretting wear behavior of structural steel En 24, against bearing steel, En 31. Materials Design 28 (2007), 1447–1452.
- 20. Budinsky K. C., Effect of hardness differential on metal-to-metal fretting damage, Wear 301 (2013), 501–507.
- 21. Lemm J. D., Warmuth A. R., Pearson S. R., Shipway P. H.: The influence of surface hardness on the fretting wear of steel pairs – its role in debris retention in contact, Tribology International 81 (2015), 258–266.
- 22. Kubiak K. J., Liskiewicz T. E., Mathia T. G.: Surface morphology in engineering applications: Influence of roughness on sliding and wear in dry fretting, Tribology International 44 (2011), 1427–1432.
- 23. Kubiak K. J., Bigerelle M., Mathia T. G., d’Hardivilliers W.: Roughness of interface in dry contact under fretting conditions, Proceedings on the 13th International Conference on Metrology and Properties of Engineering Surfaces, 12–15 April 2011, Twickenham Stadium, UK, 99–102.
- 24. Pawlus P., Michalczewski R., Dzierwa A., Lenart A.: The effect of random surface topography height on fretting in dry gross slip conditions, Proceedings of the Institution of Mechanical Engineers, part J: Journal of Engineering Tribology 228 (2014), 1374–1391.
- 25. Yoon Y., Etsion I., Talke F. E., The evolution of fretting wear in a micro-spherical contact, Wear 270 (2011), 567–575.
- 26. Elleuch K., Fouvry S.: Wear analysis of A357 aluminum alloy under fretting, Wear 253 (2002), 662–672.
- 27. Leach R. (Ed.) Characterisation of areal surface texture. Springer-Verlag Berlin, Heidelberg 2013.
- 28. Lenart A., Pawlus P., Dzierwa A., Sep J.: The effect of surface topography on dry fretting in the gross slip regime. Archives of Civil and Mechanical Engineering 17 (4) (2017), 894–904.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7abc8f3f-8cf6-4b3a-9a64-c7aa38625b7b