PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigations of ultra-lightweight-concrete encased cold-formed steel structures: local stability behavior of C-section profiles subjected to eccentric compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, cold-formed steel (CFS) has become widely used in the field of lightweight structures. In 2016, the Budapest University of Technology and Economics initiated a research study on a unique structural system using CFS and utilized ultra-lightweight concrete as an encasing material. This material serves as continuous bracing that improves CFS element resistance, stability behavior and performance, while also manifesting heat insulation capabilities, thus helping achieve sustainability goals. This paper is considered a continuation of previous research conducted by the authors. An experimental investigation was carried out on encased CFS columns subjected to eccentric loading. A total of fourteen stub-columns, with two distinct thicknesses, were subjected to various loading conditions for testing. The test results showed that local failure controlled the behavior of all the tested elements. The reduction in capacity resulting from eccentricity with respect to centric resistance varied between 20% and 52%, depending on the load position applied and on the core thickness of the tested steel elements. Moreover, the test outcomes were compared to the Eurocode analytical solution of pure steel elements. The overall load increment ranged from 46% to 18%, with a more noticeable bracing impact observed in the case of slender elements. Material tests also supplement the results.
Rocznik
Strony
art. no. e151044
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Department of Structural Engineering, Budapest University of Technology and Economics, Hungary
autor
  • Department of Structural Engineering, Budapest University of Technology and Economics, Hungary
Bibliografia
  • [1] P. Hegyi and L. Dunai, “Experimental study on ultra-lightweight-concrete encased cold-formed steel structures Part I: Stability behaviour of elements subjected to bending,” Thin-Walled Struct., vol. 101, pp. 75–84, Apr. 2016, doi: 10.1016/j.tws.2016.01.004.
  • [2] A. Alabedi and P. Hegyi, “Development of a Eurocode-based design method for local and distortional buckling for cold-formed C-sections encased in ultra-lightweight concrete under compression,” Thin-Walled Struct., vol. 196, p. 111504, Mar. 2024, doi: 10.1016/j.tws.2023.111504.
  • [3] Y. Telue and M. Mahendran, “Behaviour of cold-formed steel wall frames lined with plasterboard,” J. Constr. Steel Res., vol. 57, no. 4, pp. 435–452, Apr. 2001, doi: 10.1016/S0143-974X(00)00024-9.
  • [4] Y. Telue and M. Mahendran, “Behaviour and design of cold-formed steel wall frames lined with plasterboard on both sides,” Eng. Struct., vol. 26, no. 5, pp. 567–579, Apr. 2004, doi: 10.1016/j.engstruct.2003.12.003.
  • [5] B.W. Schafer, “Review: The Direct Strength Method of cold-formed steel member design,” J. Constr. Steel Res., vol. 64, no. 7–8, pp. 766–778, Jul. 2008, doi: 10.1016/j.jcsr.2008.01.022.
  • [6] L.C.M. Vieira Jr and B.W. Schafer, “Behavior and design of axially compressed sheathed wall studs,” in 2010 – 20th International Specialty Conference On Cold-Formed Steel Structures, 2010.
  • [7] L.C.M. Vieira, Y. Shifferaw, and B.W. Schafer, “Experiments on sheathed cold-formed steel studs in compression,” J. Constr. Steel Res., vol. 67, no. 10, pp. 1554–1566, Oct. 2011, doi: 10.1016/j.jcsr.2011.03.029.
  • [8] Kara D. Peterman, Experiments on the stability of sheathed cold-formed steel studs under axial load and bending, Johns Hopkins University, 2012.
  • [9] Y.S. Tian, J. Wang, and T.J. Lu, “Axial load capacity of cold-formed steel wall stud with sheathing,” Thin-Walled Struct., vol. 45, no. 5, pp. 537–551, May 2007, doi: 10.1016/j.tws.2007.02.017.
  • [10] L. Fiorino, O. Iuorio, and R. Landolfo, “Sheathed cold-formed steel housing: a seismic design procedure,” Thin-Walled Struct., vol. 47, no. 8–9, pp. 919–930, 2009, doi: 10.1016/j.tws.2009.02.004.
  • [11] C.-L. Pan and M.-Y. Shan, “Monotonic shear tests of cold-formed steel wall frames with sheathing,” Thin-Walled Struct., vol. 49, no. 2, pp. 363–370, Feb. 2011, doi: 10.1016/j.tws.2010.10.004.
  • [12] I. Shamim and C.A. Rogers, “Steel sheathed/CFS framed shear walls under dynamic loading: Numerical modelling and calibration,” Thin-Walled Struct., vol. 71, pp. 57–71, Oct. 2013, doi: 10.1016/j.tws.2013.05.007.
  • [13] W. Mowrtage (V. Karakale), “Cyclic lateral load behavior of CFS walls sheathed with different materials,” Thin-Walled Struct., vol. 96, pp. 328–336, Nov. 2015, doi: 10.1016/j.tws.2015.08.025.
  • [14] M. Accorti, N. Baldassino, R. Zandonini, F. Scavazza, and C.A. Rogers, “Reprint of Response of CFS Sheathed Shear Walls,” Structures, vol. 8, pp. 318–330, Nov. 2016, doi: 10.1016/j.istruc.2016.07.002.
  • [15] H. Wu, S. Chao, T. Zhou, and Y. Liu, “Cold-formed steel framing walls with infilled lightweight FGD gypsum Part II: Axial compression tests,” Thin-Walled Struct., vol. 132, pp. 771–782, Nov. 2018, doi: 10.1016/j.tws.2018.06.034.
  • [16] C. Yin, L. Zhou, Q. Zou, and Y. Xu, “Effect of Filling Phosphogypsum on the Axial Compression Behavior of Cold-Formed Thin-Walled Steel Walls,” Buildings, vol. 12, no. 9, p. 1325, Aug. 2022, doi: 10.3390/buildings12091325.
  • [17] Z. Xu, Z. Chen, B.H. Osman, and S. Yang, “Seismic performance of high-strength lightweight foamed concrete-filled cold-formed steel shear walls,” J. Constr. Steel Res., vol. 143, pp. 148–161, Apr. 2018, doi: 10.1016/j.jcsr.2017.12.027.
  • [18] Z. Xu, Z. Chen, and S. Yang, “Effect of a new type of high-strength lightweight foamed concrete on seismic performance of cold-formed steel shear walls,” Constr. Build. Mater., vol. 181, pp. 287–300, Aug. 2018, doi: 10.1016/j.conbuildmat.2018.06.067.
  • [19] Z. Xu, Z. Chen, and S. Yang, “Seismic behavior of cold-formed steel high-strength foamed concrete shear walls with straw boards,” Thin-Walled Struct., vol. 124, pp. 350–365, Mar. 2018, doi: 10.1016/j.tws.2017.12.032.
  • [20] W. Wang, J. Wang, T.Y. Yang, L. Guo, and H. Song, “Experimental testing and analytical modeling of CFS shear walls filled with LPM,” Structures, vol. 27, pp. 917–933, Oct. 2020, doi: 10.1016/j.istruc.2020.06.016.
  • [21] W. Wang, J. Wang, P. Zhao, L. Ja, and G. Pan, “Axial compressive experiments and structural behaviour estimation of CFS composite walls sprayed with LPM,” J. Build. Eng., vol. 30, p. 101305, Jul. 2020, doi: 10.1016/j.jobe.2020.101305.
  • [22] W. Wang, J. Wang, and L. Guo, “Mechanical behavior analysis of LEM-infilled cold-formed steel walls,” Sustain. Struct., vol. 2, no. 1, p. 000013, 2022, doi: 10.54113/j.sust.2022.000013.
  • [23] M.A. Othuman Mydin and Y.C. Wang, “Structural performance of lightweight steel-foamed concrete–steel composite walling system under compression,” Thin-Walled Struct., vol. 49, no. 1, pp. 66–76, Jan. 2011, doi: 10.1016/j.tws.2010.08.007.
  • [24] E.A. Flores-Johnson and Q.M. Li, “Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces,” Compos. Struct., vol. 94, no. 5, pp. 1555–1563, Apr. 2012, doi: 10.1016/j.compstruct.2011.12.017.
  • [25] E. Eltayeb et al., “Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads,” Eng. Struct., vol. 211, p. 110448, May 2020, doi: 10.1016/j.engstruct.2020.110448.
  • [26] E. Eltayeb, X. Ma, Y. Zhuge, J. Xiao, and O. Youssf, “Composite walls Composed of profiled steel skin and foam rubberized concrete subjected to eccentric compressions,” J. Build. Eng., vol. 46, p. 103715, Apr. 2022, doi: 10.1016/j.jobe.2021.103715.
  • [27] Q.-Y. Li and B. Young, “Tests of cold-formed steel built-up open section members under eccentric compressive load,” J. Constr. Steel Res., vol. 184, p. 106775, Sep. 2021, doi: 10.1016/j.jcsr.2021.106775.
  • [28] Z. He, S. Peng, X. Zhou, Z. Li, G. Yang, and Z. Zhang, “Design recommendation of cold-formed steel built-up sections under concentric and eccentric compression,” J. Constr. Steel Res., vol. 212, p. 108255, Jan. 2024, doi: 10.1016/j.jcsr.2023.108255.
  • [29] M. Peiris and M. Mahendran, “Behaviour of cold-formed steel lipped channel sections subject to eccentric axial compression,” J. Constr. Steel Res., vol. 184, p. 106808, Sep. 2021, doi: 10.1016/j.jcsr.2021.106808.
  • [30] L. Czechowski, M. Kotełko, J. Jankowski, V. Ungureanu, and A. Sanduly, “Strength analysis of eccentrically loaded thin-walled steel lipped C-profile columns,” Arch. Civ. Eng., vol. 3, no. 3, 2023, doi: 10.24425/ace.2023.146082.
  • [31] Ł. Borkowski, J. Grudziecki, M. Kotełko, V. Ungureanu, and D. Dubina, “Ultimate and post-ultimate behaviour of thin-walled cold-formed steel open-section members under eccentric compression. Part II: Experimental study,” Thin-Walled Struct., vol. 171, p. 108802, Feb. 2022, doi: 10.1016/j.tws.2021.108802.
  • [32] F.L. Bodea, I. Both, L. Czechowski, J. Jankoswki, M. Kotełko, and V. Ungureanu, “The Influence of Eccentricity on the Behaviour of Thin-Walled Cold-Formed Steel Members with Open Cross-Sections under Compression,” ce/papers, vol. 5, no. 4, pp. 186–193, Sep. 2022, doi: 10.1002/cepa.1744.
  • [33] É. Lublóy et al., “Thermal insulation capacity of concretes by expanded polystyrene aggregate,” in 4th International FIB Congress, 2014, pp. 750–751.
  • [34] P. Hegyi and L. Dunai, “Experimental investigations on ultra-lightweight-concrete encased cold-formed steel structures,” Thin-Walled Struct., vol. 101, pp. 100–108, Apr. 2016, doi: 10.1016/j.tws.2016.01.003.
  • [35] P. Hegyi and L. Dunai, “Experimental Investigation of Thin-walled Column-end Joints Encased in Ultra-lightweight Concrete,” Period. Polytech.-Civ. Eng., vol. 61, no. 4, pp. 951–957, May 2017, doi: 10.3311/PPci.10041.
  • [36] P. Hegyi, L. Horváth, L. Dunai, and A.A.M. Ghazi, “Experimental Investigation of Shear Effects in Ultra-Lightweight Concrete Encased CFS Structural Members,” ce/papers, vol. 5, no. 4, pp. 143–150, 2022, doi: 10.1002/cepa.1739.
  • [37] A. Alabedi and P. Hegyi, “Assessing the Equivalent Spring Method for Modelling of Lightweight-concrete Encased Cold-formed Steel Elements in Compression,” Period. Polytech.-Civ. Eng., vol. 68, no. 1, pp. 305–313, Oct. 2023, doi: 10.3311/PPci.22803.
  • [38] P. Hegyi and L. Dunai, “07.18: Cold-formed C-sections encased in ultra-lightweight concrete: Development of a Eurocode-based design method,” ce/papers, vol. 1, no. 2–3, pp. 1647–1656, Sep. 2017, doi: 10.1002/cepa.208.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7aba0238-febf-4caa-af40-30275a2cb3b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.