PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size distribution of ambient and radioactive aerosols formed by the shortlived radon progeny

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The survey of ambient airborne particle size distribution is important when the deposition of radioactive particles is considered in the human lung and the assessment of radiation hazard in occupational exposures or contaminated environments. CLOR (the Central Laboratory for Radiological Protection) in cooperation with CMI (the Central Mining Institute) performed simultaneous measurements of the activity size distribution of radon progeny and ambient aerosols using different types of aerosols. Measurements were performed in a radon chamber with a volume of 17m3, where radon was generated by a radium-226 open source, and ambient aerosols by an oil candle, vax candle, and incense sticks. Such measurements were also made in an aerosol depleted atmosphere after cleaning the chamber air by means of a high-efficiency pump and filters. The size distribution of radioactive aerosols containing radon progeny was measured by RPPSS (Radon Progeny Particle Size Spectrometer) with the measuring size ranging from 0.6 nm to approximately 2500 nm. The key parts of this device are the impaction plates and diffusion screen batteries, which collect aerosols of different sizes, and semiconductor alpha detectors which detect the activity of the collected particles. The SMPS (Scanning Mobility Particle Sizer Spectrometer) and APS (Aerodynamic Particle Sizer) were applied to evaluate the size distribution of all aerosols with sizes from approximately 3 nm to 20 μm. Based on the results obtained by these spectrometers, the activity size distributions and related dose conversion factors (DCF) were evaluated both for the exposed workers and the general population.
Rocznik
Strony
61--66
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Głowny Instytut Gornictwa, Śląskie Centrum Radiometrii Środowiskowej, Plac Gwarkow 1, 40-166 Katowice, Poland
  • Centralne Laboratorium Ochrony Radiologicznej, Zakład Kontroli Dawek i Wzorcowania, ul. Konwaliowa 7, 03-194 Warszawa, Poland
Bibliografia
  • 1. Annual Report (2017). Activities of the President of the National Atomic Energy Agency and Assessment of Nuclear Safety and Radiological Protection in Poland in 2017. Warsaw: National Atomic Energy Agency.
  • 2. Heyder, J., Gebhart, J., & Stahlhofen, W. (1980). Inhalation of aerosols: Particle deposition and retention. In K. Willeke (Ed.). Generation of aerosols and facilities for exposure experiments (pp. 65-103). Michigan: Ann Arbor Science Publishers Inc.
  • 3. Hinds, C. W. (1999). Aerosol technology, properties, behavior, and measurement of airborne particles (2nd ed.). New York: John Wiley & Sons Inc.
  • 4. Holaday, D. A. (1969). History of the exposure of miners to radon. Health Physics, 16(5), 547-552.
  • 5. ICRP (1994). Human respiratory tract model for radiological protection. ICRP publication 66. Annals of the ICRP, 24(1-3).
  • 6. Maher, E. F., & Laird, N. (1985). Algorithm reconstruction of particle size distributions from diffusion battery data. Journal of Aerosol Science, 16(6), 557-570. https://doi.org/10.1016/0021-8502(85)90007-2.
  • 7. Porstendorfer, J. (1994). Properties and behaviour of radon and thoron and their decay products in the air. Journal of Aerosol Science, 25(2), 219-263. https://doi.org/10.1016/0021-8502(94)90077-9.
  • 8. Porstendorfer, J. (2001). Physical parameters and dose factors of the radon and thoron decay products. Radiation Protection Dosimetry, 94(4), 365-373. https://doi.org/10.1093/oxfordjournals.rpd.a006512.
  • 9. Skubacz, K. (2017). Deconvolution of alpha spectra from air filters applied for measurements of the short-lived radon progeny concentration. Nukleonika, 62(3), 229-234. https://doi.org/10.1515/nuka-2017-0033.
  • 10. Skubacz, K., Chałupnik, S., Urban, P., & Wysocka, M. (2017). Radon chamber in the Central Mining Institute-the calibration facility for radon and radon progeny monitors. Radiation Protection Dosimetry, 177(1-2), 1-4. https://doi.org/10.1093/rpd/ncx177.
  • 11. Skubacz, K., Wojtecki, Ł., & Urban, P. (2016). The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine. Journal of Environmental Radioactivity, 162(163), 68-79. https://doi.org/10.1016/j.jenvrad.2016.05.020.
  • 12. Twomey, S. (1975). Comparison of constrained linear inversion and iterative algorithm applied to the indirect estimation of the particle size distribution. Journal of Computational Physics, 18(2), 88-200. https://doi.org/10.1016/0021-9991(75)90028-5.
  • 13. Zock, C., Porstendorfer, J., & Reineking, A. (1996). The influence of biological and aerosol parameters of inhaled short-lived radon decay products on human lung dose.
  • 14. Radiation Protection Dosimetry, 63(3), 197-206. https://doi.org/10.1093/oxfordjournals.rpd.a031530.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ab28b2e-31ea-4651-a4b8-c776a1fca6a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.