PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of the reservoir Blachownia, South Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wielopierścieniowe węglowodory aromatyczne w wodzie i osadach dennych płytkiego, nizinnego zbiornika zaporowego (na przykładzie zbiornika Blachownia, południowa Polska)
Języki publikacji
EN
Abstrakty
EN
The content of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Blachownia reservoir (South Poland) was investigated. Spatial variability of PAH concentrations in the longitudinal profile of the tank was determined. PAHs in samples were determined by gas chromatography coupled with mass spectrometric detection (GC-MS QP-2010 Plus Shimadzu) using an internal standard. Concentrations ranged from 0.103 μg/L to 2.667 μg/L (Σ16 PAHs) in water samples and from 2.329 mg/kg d.w. to 9.078 mg/kg d.w. (Σ16 PAHs) in sediment samples. A pollution balance was calculated and it was estimated that the inflow load was 17.70 kg PAHs during the year and the outflow load was 9.30 kg PAHs per year. Accumulation of about 50% of the annual PAH loads (8.90 kg) is a threat to the ecological condition of the ecosystem. It was calculated that the PAH loads in bottom sediment were about 80 kg, which limits their economic use. Improvement of the ecological status of this type of reservoir can be achieved by removing the sediment. Analysis of the diagnostic ratios obtained for selected PAHs showed that the potential sources of PAH emissions in small agricultural–forest catchments can be combustion of a coal, wood, plant material (low emission, forest fi res, burning grass, etc.). Transportation is also significant.
PL
Zbadano zawartość wielopierścieniowych węglowodorów aromatycznych (WWA) w wodzie i osadach dennych zbiornika Blachownia (południowa Polska). Określono przestrzenną zmienność stężeń WWA w profilu podłużnym zbiornika. WWA w próbkach oznaczano metodą chromatografii gazowej sprzężonej z detektorem mas (GC-MS QP-2010 Plus Shimadzu) z użyciem wzorca wewnętrznego. Stężenia wahały się od 0.103 μg/L do 2.667 μg/L (Σ16 WWA), w próbkach wody oraz od 2.329 mg/kg s.m. do 9.078 mg/kg s.m. (Σ16 WWA), w próbkach osadów dennych. Sporządzono bilans zanieczyszczeń i na tej podstawie oszacowano, że ładunek WWA wprowadzany do zbiornika w ciągu roku wynosi 17.70 kg WWA, a ładunek odpływający–9.30 kg/rok WWA. Kumulacja około 50% rocznego ładunku WWA (8.90 kg) stanowi zagrożenie dla stanu ekologicznego tego ekosystemu. Obliczono, że ładunek WWA w osadzie dennym badanego zbiornika wynosi około 80 kg, co ogranicza jego gospodarcze wykorzystanie. Poprawę stanu ekologicznego tego rodzaju zbiornika można osiągnąć poprzez usunięcie osadów. Analiza uzyskanych wartości wskaźników diagnostycznych dla określonych WWA wykazała, że potencjalnymi źródłami emisji WWA w niewielkich zlewniach o charakterze rolniczo-leśnym mogą być procesy związane ze spalaniem węgla, drewna, materiału roślinnego (niska emisja, pożary lasów, palenie trawy itp.). Znaczący wpływ wywiera również komunikacja.
Rocznik
Strony
10--23
Opis fizyczny
Bibliogr. 48 poz.,rys., tab., wykr.
Twórcy
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • University of Silesia, Poland, Faculty of Biology & Environmental Protection
Bibliografia
  • 1. Akyüz, M. & Çabuk, H. (2010). Gaseparticle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey, Science of the Total Environment, 408, pp. 5550–5558.
  • 2. Baran, S., Oleszczuk, P., Lesiuk, A. & Baranowska, E. (2002). Trace metals and polycyclic aromatic hydrocarbons in surface sediment samples from the Narew River (Poland), Polish Journal of Environmental Studies, 11, 4, pp. 299–305.
  • 3. Basavaiah, N., Mohite, R.D., Singare, P.U., Reddy, A.V.R., Singhal, R.K. & Blaha, U. (2017). Vertical distribution, composition profiles, sources and toxicity assessment of PAH residues in the reclaimed mudflat sediments from the adjacent Thane Creek of Mumbai, Marine Pollution Bulletin, 118, 1–2, pp. 112–124.
  • 4. Bojakowska, I., Sztuczynska, A. & Grabiec-Raczak, E. (2012). Monitoring studies on lake sediments in Poland: Polycyclic aromatic hydrocarbons, Biuletyn Państwowego Instytutu Geologicznego, 450, pp. 17–26. (in Polish)
  • 5. Central Statistical Office of Poland Local Data Bank (stat.gov.pl (14.05.2015)).
  • 6. Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status.
  • 7. Commission Regulation (EU) No 589/2014 of 2 June 2014 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 252/2012.
  • 8. De La Torre-Roche, R.J., Lee, W.-Y. & Campos-Díaz, S.I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region, Journal of Hazardous Materials, 163, pp. 946–958.
  • 9. Duodu, G., Ogogo, K., Mummullage, S., Harden, F., Goonetilleke, A. & Ayoko, G. (2017). Source apportionment and risk assessment of PAHs in Brisbane River sediment, Australia, Ecological Indicators, 73, pp. 784–799.
  • 10. Environmental Protection Agency, 1984, EPA/5401/1-86/013.
  • 11. Fan, C., Yang, T. & Kao, S. (2010). Characteristics of sedimentary polycyclic aromatic hydrocarbons (PAHs) in the subtropical Feitsui Reservoir, Taiwan, Journal of Hydrology, 391, 3–4, pp. 217–222.
  • 12. Feng, J., Xi, N., Zhang, F., Zhao, J., Hu, P. & Sun, J. (2016). Distributions and potential sources of polycyclic aromatic hydrocarbons in surface sediments from an emerging industrial city (Xinxiang), Environmental Monitoring and Assessment, 188, 1, pp. 1–14.
  • 13. Główny Inspektorat Ochrony Środowiska (GIOŚ), 2017 (http://www.gios.gov.pl/pl/component/content/article/8-pms/436-osady?highlight=WyJ3d2EiXQ(01.12.2017))
  • 14. Kalinowski, R. & Załęska-Radziwiłł, M. (2009). Determining the quality standards of sediments on the basis of the ecotoxicological studies, Ochrona Środowiska i Zasobów Naturalnych, 40, pp. 549–560. (in Polish)
  • 15. Katsoyiannis, A., Terzi, E. & Cai, Q.-Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69, pp. 1337–1339.
  • 16. Khalili, N.R., Scheff, P.A. & Holsen, T.M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions, Atmospheric Environment, 29, 4, pp. 533–542.
  • 17. Klejnowski, K., Pyta, H. & Czaplicka, M. (2002). Distribution of selected PAHs concentration in urban agglomerations of the Silesian Voivodship, Poland, Fresenius Environmental Bulletin, 11, 2, pp. 60–66.
  • 18. Konieczka, P. & Namieśnik, J. (2010). Estimating uncertainty in analytical procedures based on chromatographic techniques, Journal of Chromatography A, 1217, pp. 882–891.
  • 19. Kostecki, M. (2003). Allocation and transformation of selected impurities in the reservoirs hydrotechnical system Kłodnica River and Canal Gliwice, Prace i Studia, 57. (in Polish)
  • 20. Kostecki, M. & Czaplicka, M. (2001). Polycyclic aromatic hydrocarbons as part of contamination of sediments Gliwice Canal, Archives of Environmental Protection, 3, 27, pp. 119–135. (in Polish)
  • 21. Kostecki, M., Czaplicka, M. & Węglarz, A. (2000). Organic compounds (BTEXs, PAHs) in the battom sediments of dam-reservoir Dzierżno Duże (Upper Silesia), Archives of Environmental Protection, 26, 4, pp. 95–108. (in Polish)
  • 22. Krajowy Zarząd Gospodarki Wodnej, 2012. Sprawozdanie z realizacji Krajowego Programu Oczyszczania Ścieków Komunalnych za rok 2011. (in Polish)
  • 23. Kubica, K., Czaplicka, M. & Kordas, T. (1998). Determination of organic contaminants in soil from coking plant, Chemia Analityczna, 43, 1, pp. 57–67.
  • 24. Macdonald, D.D., Ingersoll, C.G. & Berger, T.A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Archives of Environmental Contamination and Toxicology, 39, 1, pp. 20−31.
  • 25. Mwanamoki, P., Devarajan, N., Thevenon, F., Birane, N., de Alencastro, L., Grandjean, D., Mpiana, P., Prabakar, K., Mubedi, J., Kabele, C., Wildi, W. & Poté, J. (2014). Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects, Chemosphere, 111, pp. 485–492.
  • 26. Nekhavhambe, T.J., van Ree, T. & Fatoki, O.S. (2014). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandou, Limpopo Province, South Africa, Water SA, 40, 3, pp. 415–424.
  • 27. Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T.A. & Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils, Chemosphere, 72, pp. 1594–1601.
  • 28. Pistelok, F. & Jureczko, I. (2014). Concentration of PAH’s in municipal wastewater in selectet sewer collectors of the Upper Silesian urban area, Poland, Archives of Environmental Protection, 40, 4, pp. 101–111.
  • 29. Qiu, Y.W., Zhang, G., Liu, G.Q., Guo, L.L., Li, X.D. & Wai, O. (2009). Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China, Estuarine, Coastal and Shelf Science, 83, 1, pp. 60–66.
  • 30. Ravindra, K., Sokhi, R. & Van Grieken, R. (2008a). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation, Atmospheric Environment, 42, pp. 2895–2921.
  • 31. Ravindra, K., Wauters, E. & Van Grieken, R. (2008b). Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses, Science of the Total Environment, 396, pp. 100–110.
  • 32. Rogula-Kozłowska, W., Kozielska, B., Błaszczak, B. & Klejnowski, K. (2012). Mass distribution of the particle size and origin of PAHs in urban background section in Poland, Ochrona powietrza w teorii i praktyce, 1, pp. 217–228. (in Polish)
  • 33. Sánez, J., Froehner, S. & Falcão, F. (2013). Use of biomarkers indices in a sediment core to evaluate potential pollution sources in a subtropical reservoir in Brazil, Chemie der Erde–Geochemistry, 73, 4, pp. 555–563.
  • 34. Sapota, A. (2002). Polycyclic aromatic hydrocarbons. Tar substances soluble in cyclohexane. Documentation of the acceptable levels of exposure health, Podstawy i Metody Oceny Środowiska Pracy, 18, pp. 179–206. (in Polish)
  • 35. Savinov, V., Savinova, T., Matishov, G., Dahle, S. & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia, Science of The Total Environment, 306, 1–3, pp. 39–56.
  • 36. Siebielec, S., Siebielec, G. & Smreczak, B. (2015). Pollution of bottom sediments of rivers and water reservoirs , Studia i Raporty IUNG-PIB, 46(20), pp. 163–181.
  • 37. Siwiński, A. (2015). How the reservoir in Blachownia was created, (www.czestochowa.simis.pl (15.05.2015)). (in Polish).
  • 38. Solberg, T., Tiefenthaler Jr., J., O’Brien, G., Behnke, H.F., Poulson, H.D., Ela, J.P. & Willett, S.D. (2003). Consensus-Based Sediment Quality Guidelines. Recommendations for Use & Application Interim Guidance. Developed by the Contaminated Sediment Standing Team, Wisconsin Department of Natural Resources.
  • 39. Stein, E.D., Tiefenthaler, L.L. & Schiff, K. (2006). Watershed – based sources of polycyclic aromatic hydrocarbons in urban storm water, Environmental Toxicology and Chemistry, 25, pp. 373–285.
  • 40. Tobiszewski, M. & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources, Environmental Pollution, 162, pp. 110–119.
  • 41. Tolosa, I., Mesa-Albernas, M. & Alonso-Hernandez, C.M. (2009). Inputs and sources of hydrocarbons in sediments from Cienfuegos bay, Cuba, Marine Pollution Bulletin, 58, 11, pp. 1624–1634.
  • 42. Włodarczyk-Makuła, M. (2011). Quantitative changes of PAHs in treated sewage during oxidation, Annual Set The Environment Protection, 13, 2, pp. 1093–1104.
  • 43. Włodarczyk-Makuła, M. (2012). Half-life of carcinogenic polycyclic aromatic hydrocarbons in stored sewage sludge, Archives of Environmental Protection, 38, 2, pp. 33–44.
  • 44. Wolska, L. (2002). Miniaturised analytical procedure of determining polycyclic aromatic hydrocarbons and polychlorinated biphenyls in bottom sediments, Journal of Chromatography A, 959, pp. 173–180.
  • 45. Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D. & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, Organic Geochemistry, 33, pp. 489–515.
  • 46. Załęska-Radziwiłł, M., Łebkowska, M. & Kalinowski, R. (2008). Investigation of the effect of safe concentrations of selected PAHs on the water biocenosis, Ochrona Środowiska, 30, 4, pp. 19–28. (in Polish)
  • 47. Zhang, F., Zhang, R., Guan, M., Shu, Y., Shen, L., Chen, X. & Li, T. (2016). Polycyclic aromatic hydrocarbons (PAHs) and Pb isotopic ratios in a sediment core from Shilianghe Reservoir, eastern China: Implying pollution sources, Applied Geochemistry, 66, pp. 140–148.
  • 48. Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y. & Wang, X. (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy through fall, Environmental Pollution, 153, pp. 594–601.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ab0ac53-dc7b-45e6-b303-d33a28f3827b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.