PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic power hierarchies: controlling isolated micro-grids with precision

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Hierarchie mocy dynamicznej: precyzyjne sterowanie izolowanymi mikrosieciami
Języki publikacji
EN
Abstrakty
EN
The management of isolated microgrids is a complex and challenging task due to their dynamic nature and evolving control systems. To address these challenges, a novel hierarchical control scheme is proposed in this article that operates across daily, weekly, and monthly horizons. The proposed scheme aims to enhance the stability and security of the power system, facilitate the integration of renewable energies, and reduce reliance on expensive and polluting diesel generators. Implemented using Matlab/Simulink, the proposed control scheme uses a multi-level loop concept to provide optimal operation of the isolated network. The primary, secondary, and tertiary control levels provide essential functions for an AC micro-grid, enabling the connection of different sources of alternating current, particularly renewable energy sources. The scheme has demonstrated its effectiveness in achieving optimal load sharing, voltage and frequency regulation, and reactive power sharing in isolated microgrids. The introduced decentralized control strategy modifies the static control parameters based on corresponding local information, improving the accuracy of frequency restoration and reactive power sharing in isolated microgrids. The results of simulations have significant implications for the efficient management and utilization of isolated networks, particularly in the context of renewable energy integration. Overall, this study contributes to the advancement of microgrid control technology and opens up new avenues for future research to improve the performance and reliability of microgrid systems.
PL
Zarządzanie izolowanymi mikrosieciami jest złożonym i wymagającym zadaniem ze względu na ich dynamiczny charakter i ewoluujące systemy sterowania. Aby sprostać tym wyzwaniom, w tym artykule zaproponowano nowy hierarchiczny schemat kontroli, który działa w horyzoncie dziennym, tygodniowym i miesięcznym. Proponowany program ma na celu zwiększenie stabilności i bezpieczeństwa systemu elektroenergetycznego, ułatwienie integracji energii odnawialnej oraz zmniejszenie uzależnienia od drogich i zanieczyszczających środowisko generatorów diesla. Zaimplementowany przy użyciu Matlab/Simulink, proponowany schemat sterowania wykorzystuje koncepcję wielopoziomowej pętli w celu zapewnienia optymalnej pracy izolowanej sieci. Podstawowe, drugorzędne i trzeciorzędne poziomy sterowania zapewniają podstawowe funkcje mikrosieci prądu przemiennego, umożliwiając podłączenie różnych źródeł prądu przemiennego, w szczególności odnawialnych źródeł energii. Schemat wykazał swoją skuteczność w osiąganiu optymalnego podziału obciążenia, regulacji napięcia i częstotliwości oraz podziału mocy biernej w izolowanych mikrosieciach. Wprowadzona zdecentralizowana strategia sterowania modyfikuje parametry sterowania statycznego w oparciu o odpowiednie informacje lokalne, poprawiając dokładność przywracania częstotliwości i podziału mocy biernej w izolowanych mikrosieciach. Wyniki symulacji mają istotne implikacje dla efektywnego zarządzania i wykorzystania odizolowanych sieci, szczególnie w kontekście integracji energii odnawialnej. Ogólnie rzecz biorąc, badanie to przyczynia się do rozwoju technologii sterowania mikrosieciami i otwiera nowe możliwości dla przyszłych badań nad poprawą wydajności i niezawodności systemów mikrosieci.
Rocznik
Strony
117--122
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • University TAHRI Mohammed of Bechar 08000 Algeria
  • University TAHRI Mohammed of Bechar 08000 Algeria
  • University TAHRI Mohammed of Bechar 08000 Algeria
Bibliografia
  • [1] J. C. Vasquez, J. M. Guerrero, J. Miret, M. Castilla, and L. G. De Vicuna, "Hierarchical control of intelligent microgrids," IEEE Industrial Electronics Magazine, vol. 4, pp. 23-29, 2010. DOI: https://doi.org/ 10.1109/MIE.2010.938720.
  • [2] O. Babayomi, Z. Zhang, T. Dragicevic, R. Heydari, Y. Li, C. Garcia, et al., "Advances and opportunities in the model predictive control of microgrids: Part ii–secondary and tertiary layers," International Journal of Electrical Power & Energy Systems, vol. 134, p. 107339, 2022.
  • [3] M. Zolfaghari, G. B. Gharehpetian, M. Shafie-khah, and J. P. Catalão, "Comprehensive review on the strategies for controlling the interconnection of AC and DC microgrids," International Journal of Electrical Power & Energy Systems, vol. 136, p. 107742, 2022.
  • [4] S. Augustine, N. Lakshminarasamma, and M. K. Mishra, "Control of photovoltaic-based low-voltage dc microgrid system for power sharing with modified droop algorithm," IET Power Electronics, vol.9,pp.1132-1143,2016. DOI: https://doi.org/ 10.1049/iet-pel.2015.0325.
  • [5] P. D. Lezhniuk, I. O. HUNKO, S. V. Kravchuk, P. Komada, K. Gromaszek, A. Mussabekova, et al., "The influence of distributed power sources on active power loss in the microgrid," Przegląd Elektrotechniczny, vol. 93, pp. 107--112, 2017. DOI: https://doi.org/ 10.15199/48.2017.03.25.
  • [6] V. Sebestyén, "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, vol. 151, p. 111626, 2021. DOI: https://doi.org/ 10.1016/j.rser.2021.111626.
  • [7] Y. Wang, W. Yao, C.Ju, S.Wen, Y. Xu, and Y. Tang, "Distributed Secondary Control of Energy Storage Systems in Islanded AC Microgrids," in 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 2018, pp.1-6 DOI: https://doi.org/ 10.1109/ACEPT.2018.8610762.
  • [8] J. M. Rey, P. Martí, M. Velasco, J. Miret, and M. Castilla, "Secondary switched control with no communications for islanded microgrids," IEEE Transactions on Industrial Electronics, vol. 64, pp.8534-8545,2017. DOI: https://doi.org/ 10.1109/TIE.2017.2703669.
  • [9] M. Parol, P. Kapler, J. Marzecki, R. Parol, M. Połecki, and Ł. Rokicki, "Effective approach to distributed optimal operation control in rural low voltage microgrids," Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 68, 2020. DOI: https://doi.org/ 10.24425/bpasts.2020.434478.
  • [10] P. S. Kundur and O. P. Malik, Power system stability and control: McGraw-Hill-Education,2022 DOI: https://doi.org/ 10.1109/TIA.2022.3158352.
  • [11] M. Akbari, S. M. Moghaddas-Tafreshi, and M. A. Golkar, "Wavelet-Based Multi-Resolution Voltage Controller in a Hybrid AC/DC Microgrid," sat, vol. 1, p. 1, 2012.
  • [12] M. Di Silvestre, M. Graells Sobré, J. M. Guerrero, A. C. Luna, L. Mineo, N. Nguyen, et al., "Energy Management Systems and tertiary regulation in hierarchical control architectures for islanded micro-grids," in 2015 IEEE 15th International Conference on Environment and Electrical Engineering. Conference Proceedings, 2015.
  • [13] K. Moslehi and R. Kumar, "A reliability perspective of the smart grid," IEEE transactions on smart grid, vol. 1, pp. 57-64, 2010.
  • [14] M. U. Nwachukwu, N. F. Ezedinma, and U. Jiburum, "Comparative analysis of electricity consumption among residential, commercial and industrial sectors of the Nigeria’s economy," Journal of Energy Technologies and Policy, vol. 4, pp. 7-13, 2014.
  • [15] S. Ferahtia, H. Rezk, M. A. Abdelkareem, and A. Olabi, "Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm," Applied Energy,vol.306,p.118069,2022. DOI: https://doi.org/ 10.1016/j.apenergy.2021.118069.
  • [16] O. Palizban and K. Kauhaniemi, "Energy storage systems in modern grids—Matrix of technologies and applications," Journal of Energy Storage,vol.6,pp.248-259,2016. DOI: https://doi.org/ 10.1016/j.est.2016.02.001.
  • [17] J. Wei, D. Kundur, T. Zourntos, and K. L. Butler-Purry, "A flocking-based paradigm for hierarchical cyber-physical smart grid modeling and control," IEEE Transactions on Smart Grid, vol. 5, pp. 2687-2700, 2014. DOI: https://doi.org/ 10.1109/TSG.2016.2341211.
  • [18] X. Sun, B. Liu, Y. Cai, H. Zhang, Y. Zhu, and B. Wang, "Frequency-based power photovoltaic/battery/fuel management cell-electrolyser for stand-alone microgrid," IET Power Electronics, vol. 9, pp.2602-2610,2016. DOI: https://doi.org/ 10.1049/iet-pel.2015.0663.
  • [19] X. Xu, H. Jia, D. Wang, C. Y. David, and H.-D. Chiang, "Hierarchical energy management system for multi-source multi-product microgrids," Renewable Energy, vol. 78, pp. 621630, 2015. DOI: https://doi.org/ 10.1016/j.renene.2015.01.039.
  • [20] O. Palizban and K. Kauhaniemi, "Hierarchical control structure in microgrids with distributed generation: Island and gridconnected mode," Renewable and Sustainable Energy Reviews, vol. 44, pp. 797-813,2015.
  • [21] A. Khanjanzadeh, S. Soleymani, and B. Mozafari, "A decentralized control strategy to bring back frequency and share reactive power in isolated microgrids with virtual power plant," Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 69, 2021. DOI: https://doi.org/ 10.24425/bpasts.2021.136190.
  • [22] Z. Zhang, O. Babayomi, T. Dragicevic, R. Heydari, C. Garcia, J. Rodriguez, et al., "Advances and opportunities in the model predictive control of microgrids: Part i–primary layer," International Journal of Electrical Power & Energy Systems, vol. 134, p. 107411, 2022.
  • [23] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, "Evaluation of the hierarchical control of distributed Energy Storage Systems in islanded Microgrids based on Std IEC/ISO 62264," in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp.1-5 DOI: https://doi.org/ 10.1109/PESGM.2016.7741411.
  • [24] X. Lin and R. Zamora, "Controls of hybrid energy storage systems in microgrids: Critical review, case study and future trends," Journal of Energy Storage, vol. 47, p. 103884, 2022.
  • [25] O. Palizban and K. Kauhaniemi, "Distributed cooperative control of battery energy storage system in AC microgrid applications," Journal of Energy Storage, vol. 3, pp. 43-51, 2015. DOI: https://doi.org/ 10.1016/j.est.2015.08.005.
  • [26] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, "Distributed secondary control for islanded microgrids—A novel approach," IEEE Transactions on power electronics, vol. 29, pp. 10181031, 2013. DOI: https://doi.org/ 10.1109/TPEL.2013.2259506.
  • [27] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, "Microgrids in active network management–part II: System operation, power quality and protection," Renewable and Sustainable Energy Reviews,vol.36,pp.440-451,2014. DOI: https://doi.org/ 10.1016/j.rser.2014.04.048.
  • [28] N. Medeiros-Ward, J. M. Cooper, and D. L. Strayer, "Hierarchical control and driving," Journal of experimental psychology: General, vol.143,p.953,2014. DOI: https://doi.org/ 10.1109/ECCE.2018.8557737.
  • [29] M. H. Cintuglu, T. Youssef, and O. A. Mohammed, "Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control," IEEE Transactions on Smart Grid, vol. 9, pp. 1759-1768, 2016. DOI: https://doi.org/ 10.1109/TSG.2016.2599265.
  • [30] S. Ishaq, I. Khan, S. Rahman, T. Hussain, A. Iqbal, and R. M. Elavarasan, "A review on recent developments in control and optimization of micro grids," Energy Reports, vol. 8, pp. 40854103, 2022. DOI: https://doi.org/ 10.1016/j.egyr.2022.01.080.
  • [31] M. E. T. Souza Junior and L. C. G. Freitas, "Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review," Sustainability, vol. 14, p. 3597,2022. DOI: https://doi.org/ 10.3390/su14063597.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7aaaf3ea-2fc3-4124-978c-5caa9b9752e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.