PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generative artificial intelligence-driven medical digital twin technologies in blockchain Internet of Things wearable sensor and computer vision-based extended reality healthcare metaverse

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research problem of this paper was whether medical image, behavioral pattern, and physiological data analysis further artificial intelligence-based disease progression prediction, big medical data analysis and processing, and treatment planning optimization, digital twin- and generative artificial intelligence-based disease progression prediction and medical process simulation, patient outcome and pathological condition improvement, and medical service efficiency and resource allocation. We show that physiological measurement indicator modeling and simulation and patient diagnosis and clinical workflow optimization necessitate generative artificial intelligence- and machine learning-based metaverse wearable and implantable medical devices. Our analyses debate on medical metaverse digital twin generative artificial intelligence and machine learning-based big clinical and medical imaging data interoperability and analysis harnessed in remote medical treatment and healthcare practices, healthcare delivery and patient outcome enhancement, real-time medical anomaly detection, timely medical treatment and response prediction, and immersive medical procedure and healthcare delivery simulation in blockchain Internet of Things wearable sensor and computer vision-based extended reality healthcare metaverse. Our results and contributions clarify that clinical decision support systems and generative artificial intelligence-based patient medical disease and health data processing and analysis configure clinical patient care and outcome prediction, health risk forecasting, medical abnormality detection, and remote patient vital sign and health issue monitoring.
Rocznik
Strony
27--50
Opis fizyczny
Bibliogr. 69 poz., tab.
Twórcy
  • Curtin University, Kent Street, Bentley Western 6102, Australia Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
  • Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, United Kingdom
autor
  • Curtin University, Kent Street, Bentley Western 6102, Australia
  • Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
  • Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • Al-Hawawreh, M., & Hossain, M. S. (2025). A human-cen tered quantum machine learning framework for attack detection in IoT-based healthcare Industry 5.0. IEEE Internet of Things Journal. doi: 10.1109/ JIOT.2025.3565687
  • Andronie, M., Lăzăroiu, G., Iatagan, M., Uță, C., Ștefănescu, R., & Cocoșatu, M. (2021). Artificial intelligence based decision-making algorithms, Internet of T hings sensing networks, and deep learning-assisted smart process management in cyber-physical pro duction systems. Electronics, 10(20). doi: 10.3390/ electronics10202497
  • Andronie, M., Lăzăroiu, G., Iatagan, M., Hurloiu, I., Ștefănescu, R., Dijmărescu, A., & Dijmărescu, I. (2023a). Big data management algorithms, deep learning-based object detection technologies, and geospatial simulation and sensor fusion tools in the Internet of Robotic Things. ISPRS International Journal of Geo-Information, 12(2), 35. doi: 10.3390/ ijgi12020035
  • Andronie, M., Lăzăroiu, G., Karabolevski, O. L., Ștefănescu, R., Hurloiu, I., Dijmărescu, A., & Dijmărescu, I. (2023b). Remote big data management tools, sens ing and computing technologies, and visual percep tion and environment mapping algorithms in the Internet of Robotic Things. Electronics, 12(1), 22. doi: 10.3390/electronics12010022
  • Baumgartner, C., & Brislinger, D. (2025). Transforming precision medicine: The potential of the clinical arti f icial intelligent single-cell framework. Clinical and Translational Medicine, 15(1), e70096. doi: 10.1002/ ctm2.70096
  • Bhatia, M. (2024). An AI-enabled secure framework for enhanced elder healthcare. Engineering Applications of Artificial Intelligence, 131. doi: 10.1016/j.engap pai.2023.107831
  • Bordukova, M., Makarov, N., Rodriguez-Esteban, R., Schmich, F., & Menden, M. P. (2024). Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opinion on Drug Discovery, 19(1), 33-42. doi:10.1080/17460441.2023. 2273839
  • Bozkaya-Aras, E., Onel, T., Eriskin, L., & Karatas, M. (2025). Intelligent human activity recognition for healthcare digital twin. Internet of Things, 30. doi: 10.1016/j.iot.2025.101497
  • Brahmi, R., Boujnah, N., & Ejbali, R. (2024). Elaboration of innovative digital twin models for healthcare moni toring with 6G functionalities. IEEE Access, 12, 109608-109624. doi: 10.1109/ACCESS.2024.3439269
  • Cecconi, M., Greco, M., Shickel, B., Vincent, J.-L., & Bihorac, A. (2024). Artificial intelligence in acute medicine: a call to action. Critical Care, 28, 258. doi: 10.1186/s13054-024-05034-7
  • Chaddad, A., & Jiang, Y. (2025). Integrating technologies in the metaverse for enhanced healthcare and medical education. IEEE Transactions on Learning Technolo gies, 18, 216-229. doi: 10.1109/TLT.2025.3537802
  • Checcucci, E., Oing, C., Amparore, D., Porpiglia, F., & Rescigno, P. (2025). Digital twins in urological oncology: Precise treatment planning via complex modeling. European Urology Oncology, 8(1), 1-4. doi: 10.1016/j.euo.2024.10.005
  • Chen, J., Shi, Y., Yi, C., Du, H., Kang, J., & Niyato, D. (2024a). Generative-AI-driven human digital twin in IoT healthcare: A comprehensive survey. IEEE Internet of Things Journal, 11(21), 34749 34773. doi: 10.1109/JIOT.2024.3421918
  • Chen, J., Yi, C., Du, H., Niyato, D., Kang, J., & Cai, J. (2024b). A revolution of personalized healthcare: Enabling human digital twin with mobile AIGC. IEEE Net work, 38(6), 234-242. doi: 10.1109/ MNET.2024.3366560
  • De Domenico, M., Allegri, L., Caldarelli, G., d’Andrea, V., Di Camillo, B., Rocha, L. M., Rozum, J., Sbarbati, R., & Zambelli, F. (2025). Challenges and opportuni ties for digital twins in precision medicine from a complex systems perspective. npj Digital Medicine, 8, 37. doi: 10.1038/s41746-024-01402-3
  • Demuth, S., De Sèze, J., Edan, G., Ziemssen, T., Simon, F., & Gourraud, P. A. (2025). Digital representation of patients as medical digital twins: Data-centric view point. JMIR Medical Informatics, 13, e53542. doi: 10.2196/53542
  • Earp, B. D., Porsdam Mann, S., Allen, J., Salloch, S., Suren, V., Jongsma, K., Braun, M., Wilkinson, D., Sinnott Armstrong, W., Rid, A., Wendler, D., & Savulescu, J. (2024). A personalized patient preference predictor for Substituted Judgments in Healthcare: Technically Feasible and Ethically Desirable. The American Journal of Bioethics, 24(7), 13-26. doi: 10.1080/15265161.2023.2296402
  • Gaffinet, B., Ali, J. A. H., Naudet, Y., & Panetto, H. (2025). Human Digital Twins: A systematic literature review and concept disambiguation for industry 5.0. Com puters in Industry, 166, 104230. doi: 10.1016/j.com pind.2024.104230
  • Guerrero Quiñones, J. L., & Puzio, A. (2025). Digital twins for trans people in healthcare: queer, phenomeno logical and bioethical considerations. Journal of Medical Ethics. doi: 10.1136/jme-2024-110403
  • Iranshahi, K., Brun, J., Arnold, T., Sergi, T., & Müller, U. C. (2025). Digital twins: Recent advances and future directions in engineering fields. Intelligent Systems with Applications, 26. doi: 10.1016/j.iswa. 2025.200516
  • Jameil, A. K., & Al-Raweshidy, H. (2024). AI-enabled healthcare and enhanced computational resource management with digital twins into task offloading strategies. IEEE Access, 12, 90353-90370. doi: 10.1109/ACCESS.2024.3420741
  • Jameil, A. K., & Al-Raweshidy, H. (2025). A digital twin framework for real-time healthcare monitoring: lev eraging AI and secure systems for enhanced patient outcomes. Discover Internet of Things, 5, 37. doi: 10.1007/s43926-025-00135-3
  • Javaid, M., Haleem, A., & Singh, R. P. (2024). Health infor matics to enhance the healthcare industry’s culture: An extensive analysis of its features, contributions, applications and limitations. Informatics and Health, 1(2), 123-148. doi: 10.1016/j.infoh.2024.05.001
  • Jones, A., Vijayan, T. B., & John, S. (2024). Diagnosing cata racts in the digital age: A survey on AI, metaverse, and digital twin applications. Seminars in Ophthal mology, 39(8), 562-569. doi: 10.1080/08820538. 2024.2403436
  • Katsoulakis, E., Wang, Q., Wu, H., Shahriyari, L., Fletcher, R., Liu, J., Achenie, L., Liu, H., Jackson, P., Xiao, Y., Syeda-Mahmood, T., Tuli, R., & Deng, J. (2024). Digital twins for health: a scoping review. npj Digital Medicine, 7, 77. doi: 10.1038/s41746-024-01073-0
  • Khan, S., Alzaabi, A., Ratnarajah, T., & Arslan, T. (2024). Novel statistical time series data augmentation and machine learning based classification of unobtrusive respiration data for respiration digital twin model. Computers in Biology and Medicine, 168. doi: 10.1016/j.compbiomed.2023.107825
  • Lăzăroiu, G., Androniceanu, A., Grecu, I., Grecu, G., & Neguriță, O. (2022a). Artificial intelligence based decision-making algorithms, Internet of T hings sensing networks, and sustainable cyber physical management systems in big data-driven cognitive manufacturing. Oeconomia Copernicana, 13(4), 1047-1080. doi: 10.24136/oc.2022.030
  • Lăzăroiu, G., Andronie, M., Iatagan, M., Geamănu, M., Ștefănescu, R., & Dijmărescu, I. (2022b). Deep learning-assisted smart process planning, robotic wireless sensor networks, and geospatial big data management algorithms in the Internet of Manufacturing Things. ISPRS International Jour nal of Geo-Information, 11(5), 277. doi: 10.3390/ ijgi11050277
  • Lăzăroiu, G., Gedeon, T., Rogalska, E., Valaskova, K., Nagy, M., Musa, H., Zvarikova, K., Poliak, M., Horak, J., Crețoiu, R. I., Krulicky, T., Ionescu, L., Popa, C., Hurloiu, L. R., Nistor, F., Avram, L. G., & Braga, V. (2024). Digital twin-based cyber-physical manu facturing systems, extended reality metaverse enter prise and production management algorithms, and Internet of Things financial and labor market tech nologies in generative artificial intelligence econom ics. Oeconomia Copernicana, 15(3), 837-870. doi: 10.24136/oc.3183
  • Li, T., Shen, Y., Li, Y., Zhang, Y., & Wu, S. (2024). The status quo and future prospects of digital twins for health care. EngMedicine, 1(3). doi: 10.1016/ j.engmed.2024.100042
  • Lin, F., Gao, T., Sun, D., Ni, Q., Ding, X., Wang, J., Gao, D., and Wang, F.-Y. (2025). Parallel medical devices and instruments: Integrating edge and cloud intelli gence for smart treatment and health systems. IEEE/ CAA Journal of Automatica Sinica, 12(4), 651-654. doi: 10.1109/JAS.2024.124614
  • Mazhar, T., khan, S., Shahzad, T., khan, M. A., Saeed, M. M., Bamidele Awotunde, J., & Hamam, H. (2025). Gen erative AI, IoT, and blockchain in healthcare: appli cation, issues, and solutions. Discover Internet of T hings, 5, 5. doi: 10.1007/s43926-025-00095-8
  • Mollica, L., Leli, C., Sottotetti, F., Quaglini, S., Locati, L. D., & Marceglia, S. (2024). Digital twins: a new paradigm in oncology in the era of big data. ESMO Real World Data and Digital Oncology, 5. doi: 10.1016/j.esmorw.2024.100056
  • Nguyen, H.-S., & Voznak, M. (2024). A bibliometric analy sis of technology in digital health: Exploring health metaverse and visualizing emerging healthcare management Trends. IEEE Access, 12, 23887-23913. doi: 10.1109/ACCESS.2024.3363165
  • Niarakis, A., Laubenbacher, R., An, G., Ilan, Y., Fisher, J., Flobak, Å., Reiche, K., Rodríguez Martínez, M., Geris, L., Ladeira, L., Veschini, L., Blinov, M. L., Messina, F., Fonseca, L. L., Ferreira, S., Mon tagud, A., Noël, V., Marku, M., Tsirvouli, E., Torres, M. M., Harris, L. A., Sego, T. J., Cockrell, C., Shick, A. E., Balci, H., Salazar, A., Rian, K., Hemedan, A. A., Esteban-Medina, M., Staumont, B., Hernan dez-Vargas, E., Martis B, S., Madrid-Valiente, A., Karampelesis, P., Sordo Vieira, L., Harlapur, P., Kulesza, A., Nikaein, N., Garira, W., Sheriff, R. S. M., Thakar, J., Tran, V. D. T., Carbonell-Cabal lero, J., Safaei, S., Valencia, A., Zinovyev, A., & Gla zier, J. A. (2024). Immune digital twins for complex human pathologies: applications, limitations, and challenges. npj Systems Biology and Applications, 10, 141. doi: 10.1038/s41540-024-00450-5
  • Noeikham, P., Buakum, D., & Sirivongpaisal, N. (2024). Architecture designing of digital twin in a healthcare unit. Health Informatics Journal, 30(4). doi: 10.1177/14604582241296792
  • Okegbile, S. D., Gao, H., Talabi, O., Cai, J., Yi, C., & Niyato, D. (2025). FLeS: A federated learning-enhanced semantic communication framework for mobile AIGC-driven human digital twins. IEEE Network. doi: 10.1109/MNET.2025.3526556
  • Ortega-Martorell, S., Olier, I., & Lip, G. Y. H. (2025a). A European network to develop virtual twin technol ogy for personalized stroke management in atrial f ibrillation: the TARGET consortium. European Heart Journal, 46(3), 229-232. doi: 10.1093/eur heartj/ehae673
  • Ortega-Martorell, S., Olier, I., Ohlsson, M., and Lip, G. Y. H. (2025b). Advancing personalised care in atrial fibrillation and stroke: The potential impact of AI from prevention to rehabilitation. Trends in Car diovascular Medicine, 35(4), 205-211. doi: 10.1016/ j.tcm.2024.12.003
  • Oulefki, A., Amira, A., & Foufou, S. (2025). Digital twins and AI transforming healthcare systems through innovation and data-driven decision making. Health and Technology, 15, 299-321. doi: 10.1007/s12553 025-00947-x
  • Pellegrino, G., Gervasi, M., Angelelli, M., & Corallo, A. (2025). A conceptual framework for digital twin in healthcare: Evidence from a systematic meta review. Information Systems Frontiers, 27, 7-32. doi: 10.1007/s10796-024-10536-4
  • Qoseem, I. O., Ahmed, M., Abdulraheem, H., Hamzah, M. O., Ahmed, M. M., Ukoaka, B. M., Okesanya, O. J., Ogaya, J. B., Adigun, O. A., Ekpenyong, A. M., & Lucero-Prisno III, D. E. (2024). Unlocking the potentials of digital twins for optimal healthcare delivery in Africa. Oxford Open Digital Health, 2. doi: 10.1093/oodh/oqae039
  • Rahim, M., Lalouani, W., Toubal, E., & Emokpae, L. (2024). A digital twin-based platform for medical cyber physical systems. IEEE Access, 12, 174591-174607. doi: 10.1109/ACCESS.2024.3502077
  • Raman, R., Hughes, L., Mandal, S., Das, P., & Nedungadi, P. (2024). Mapping metaverse research to the sustain able development goal of good health and well-being. IEEE Access, 12, 180631-180651. doi: 10.1109/ ACCESS.2024.3502171
  • Ren, Y., Pieper, A. A., & Cheng, F. (2025). Utilization of precision medicine digital twins for drug discovery in Alzheimer's disease. Neurotherapeutics, 22(3). doi: 10.1016/j.neurot.2025.e00553
  • Riahi, V., Diouf, I., Khanna, S., Boyle, J., & Hassanzadeh, H. (2025). Digital twins for clinical and operational decision-making: Scoping review. Journal of Medical Internet Research, 27. doi: 10.2196/55015
  • Roopa, M. S., & Venugopal, K. R. (2025). Digital twins for cyber-physical healthcare systems: Architecture, requirements, systematic analysis, and future pros pects. IEEE Access, 13, 44963-44996. doi: 10.1109/ ACCESS.2025.3547991.
  • Rowan, N. J. (2024). Digital technologies to unlock safe and sustainable opportunities for medical device and healthcare sectors with a focus on the combined use of digital twin and extended reality applications: A review. Science of The Total Environment, 926. doi: 10.1016/j.scitotenv.2024.171672
  • Shamshiri, S., Liu, H., & Sohn, I. (2025). Adversarial robust image processing in medical digital twin. Informa tion Fusion, 115. doi: 10.1016/j.inffus.2024.102728
  • Sharma, V., Kumar, A., & Sharma, K. (2025). Next-genera tion healthcare: Digital twin technology and Monk eypox Skin Lesion Detector network enhancing monkeypox detection - Comparison with pre-trained models. Engineering Applications of Artificial Intel ligence, 145, 110257. doi: 10.1016/j.engap pai.2025.110257
  • Sinha, R. (2024). The role and impact of new technologies on healthcare systems. Discover Health Systems, 3, 96. doi: 10.1007/s44250-024-00163-w
  • Somers, R., Walkinshaw, N., Mark Hierons, R., Elliott, J., Iqbal, A., & Walkinshaw, E. (2025). Configuration testing of an artificial pancreas system using a digital twin: An evaluative case study. Software Testing, Verification and Reliability, 35(2). doi: 10.1002/ stvr.70000
  • Strigari, L., Schwarz, J., Bradshaw, T., Brosch-Lenz, J., Cur rie, G., El-Fakhri, G., Jha, A. K., Mežinska, S., Pandit Taskar, N., Roncali, E., Shi, K., Uribe, C., Yusufaly, T., Zaidi, H., Rahmim, A., and Saboury, B. (2025). Computational nuclear oncology toward precision radiopharmaceutical therapies: Ethical, regulatory, and socioeconomic dimensions of theranostic digital twins. Journal of Nuclear Medicine. doi: 10.2967/ jnumed.124.268186
  • Subramaniam, S., Akay, M., Anastasio, M. A., Bailey, V., Boas, D., & Bonato, P. (2024). Grand challenges at the interface of engineering and medicine. IEEE Open Journal of Engineering in Medicine and Biol ogy, 5, 1-13. doi: 10.1109/OJEMB.2024.3351717
  • Takahashi, Y., Idei, H., Komatsu, M., Tani, J., Tomita, H., & Yamashita, Y. (2025). Digital twin brain simulator for real-time consciousness monitoring and virtual intervention using primate electrocorticogram data. npj Digital Medicine, 8, 80. doi: 10.1038/s41746-025 01444-1
  • Tamura, Y., Nomura, A., Kagiyama, N., Mizuno, A., & Node, K. (2024). Digitalomics, digital interven tion, and designing future: The next frontier in cardi ology. Journal of Cardiology, 83(5), 318-322. doi: 10.1016/j.jjcc.2023.12.002
  • Tang, C., Yi, W., Occhipinti, E., Dai, Y., Gao, S., & Occhip inti, L. G. (2024). A roadmap for the development of human body digital twins. Nature Reviews Electrical Engineering, 1, 199-207. doi: 10.1038/s44287-024 00025-w
  • Tao, K., Lei, J., & Huang, J. (2024). Physical integrated digi tal twin-based interaction mechanism of artificial intelligence rehabilitation robots combining visual cognition and motion control. Wireless Personal Communications. doi: 10.1007/s11277-024-11108-0
  • Thangaraj, P. M., Benson, S. H., Oikonomou, E. K., Asselbergs, F. W., & Khera, R. (2024). Cardio vascular care with digital twin technology in the era of generative artificial intelligence. European Heart Journal, 45(45), 4808-4821. doi: 10.1093/eurheartj/ ehae619
  • Thomason, J. (2024). Data, digital worlds, and the avatari zation of health care. Global Health Journal, 8(1), 1-3. doi: 10.1016/j.glohj.2024.02.003
  • Ullah, S., Khan, S., Vanecek, D., & Ur Rehman, I. (2025). Machine learning and digital-twins-based Internet of Robotic Things for remote patient monitoring. IEEE Access, 13, 57141-57165. doi: 10.1109/ ACCESS.2025.3555495
  • Vallée, A. (2024). Envisioning the future of personalized medicine: Role and realities of digital twins. Journal of Medical Internet Research, 26. doi: 10.2196/50204
  • Venkatesh, K. P., Brito, G., & Boulos, M. N. K. (2024). Health digital twins in life science and health care innovation. Annual Review of Pharmacology and Toxicology, 64, 159-170. doi: 10.1146/annurev pharmtox-022123-022046
  • Vidovszky, A. A., Fisher, C. K., Loukianov, A. D., Smith, A. M., Tramel, E. W., Walsh, J. R., & Ross, J. L. (2024). Increasing acceptance of AI-generated digital twins through clinical trial applications. Clinical and Translational Science, 17(7). doi: 10.1111/cts.13897
  • Wang, Y., Wang, L., & Siau, K. L. (2024). Human-centered interaction in virtual worlds: A new era of generative artificial intelligence and metaverse. International Journal of Human–Computer Interaction, 41(2), 1459-1501. doi: 10.1080/10447318.2024.2316376
  • Wu, P., Chen, D., & Zhang, R. (2024). Topic prevalence and trends of metaverse in healthcare: a bibliometric analysis. Data Science and Management, 7(2), 129 143. doi: 10.1016/j.dsm.2023.12.003
  • Xames, M. D., & Topcu, T. G. (2024). A systematic literature review of digital twin research for healthcare systems: Research trends, gaps, and realization challenges. IEEE Access, 12, 4099-4126. doi: 10.1109/ ACCESS.2023.3349379
  • Yu, F., Yu, C., Tian, Z., Liu, X., Cao, J., Liu, L., Du, C., & Jiang, M. (2024). Intelligent wearable system with motion and emotion recognition based on digi tal twin technology. IEEE Internet of Things Journal, 11(15), 26314-26328. doi: 10.1109/JIOT.2024. 3394244
  • Zhang, H., Cao, Y., Jiang, H., Zhou, Q., Yang, Q., & Cheng, L. (2025). The present and future of digital health, digital medicine, and digital therapeutics for allergic diseases. Clinical and Translational Allergy, 15(1), e70020. doi: 10.1002/clt2.70020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7aa8d5da-79f1-42be-9a25-3de69b6e0420
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.