PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of a modified OxiTop® respirometer for laboratory composting studies

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie zmodyfikowanego systemu OxiTop® do laboratoryjnych badań procesu kompostowania
Języki publikacji
EN
Abstrakty
EN
This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the measuring head) and application of a closed steel mesh cylinder of 5 cm in diameter and 10 cm in height with the open surface area of the mesh of approximately 56.2%. This modification allowed obtaining different bulk densities (and thus air-porosities) of the investigated composting materials in laboratory composting studies. The test was performed for apple pomace and composting mixtures of apple pomace with wood chips at ratios of 1:0.5, 1:1, 1:1.5 (d.w), moisture contents of 60%, 65% and 75% and air-filled porosities ranging from 46% to 1%. Due to diverse biodegradability of the investigated apple pomace and composting mixtures this test allows for the determination of the effects of different air-porosities (due to compaction in a pile) on the oxygen uptake rate for mixtures with a fixed ratio of a bulking agent. The described method allows for laboratory determination of the effects of moisture content and compaction on biodegradation dynamics during composting.
PL
W przedstawionych badaniach wykorzystano zmodyfikowany system OxiTop® do wyznaczenia szybkości oddychania w oparciu o zużycie tlenu podczas 2-dniowego testu respirometrycznego dla wybranych materiałów przeznaczonych do kompostowania o różnym składzie mieszanek, zawartości wody i porowatości. Modyfikacja systemu OxiTop® dotyczyła dostosowania szklanego naczynia oraz jego wyposażenie w cylinder w kształcie walca o średnicy 5 cm i wysokości 10 cm, wykonanego z siatki stalowej (oczka siatki stanowiły ok. 56,2% całkowitej powierzchni). Ta modyfikacja pozwoliła na uzyskiwanie różnych gęstości nasypowych (a tym samym porowatości) badanych materiałów w skali laboratoryjnej. Test respirometryczny został przeprowadzony dla wytłoków jabłkowych i mieszanek wytłoków jabłkowych i ścinek drzewnych w stosunku 1:0,5, 1:1, 1:1,5 (s.m) i zawartości wody 60%, 65% i 75% oraz porowatości w zakresie od ok. 46% do ok. 1%. Z uwagi na różną podatność badanych mieszanek na biodegradację, możliwe było określenie wpływu zmian porowatości powietrznej (spowodowanych kompakcją) na szybkość zużycia tlenu dla mieszanki o stałym udziale czynnika strukturotwórczego. Przedstawiona metoda pozwala na laboratoryjne badanie wypływu zawartości wody i kompakcji na biodegradację podczas kompostowania.
Rocznik
Strony
56--62
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • Czestochowa University of Technology, Poland Faculty of Environmental Engineering and Biotechnology Institute of Environmental Engineering
Bibliografia
  • [1]. Ahn, H.K., Richard, T.L. & Glanville, T.D. (2008). Optimum moisture levels for biodegradation of mortality composting envelope materials, Waste Management, 28, 8, pp. 1411–1416.
  • [2]. Ahn, H.K., Richard, T.L., Glanville, T.D., Harmon, J.D. & Reynolds, D.L. (2005). Estimation of optimum moisture levels for biodegradation of compost bulking materials, ASAE Annual international Meeting 2005, Florida, USA 2005.
  • [3]. Barrena, R., Turet, J., Busquets, A., Farrés, M., Font, X. & Sánchez, A. (2011). Respirometric screening of several types of manure and mixtures intended for composting, Bioresource Technology, 102, pp. 1367–1377.
  • [4]. Binner, E., Böhm, K. & Lechner, P. (2012). Large scale study on measurement of respiration activity (AT4) by Sapromat and Oxitop, Waste Management, 32(10), pp. 1752–1759.
  • [5]. Cáceres, R., Coromina, N., Malińska, K. & Marfá, O. (2015). Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media, Bioresource Technology, 179, pp. 398–406.
  • [6]. Cronjé, A.L., Turner, C., Williams, A.G., Baker, A.J. & Guy, S. (2004). The respiration rate of composting pig manure, Compost Science and Utilization, 12, pp. 119–129.
  • [7]. Eftoda, G. & McCartney, D. (2004). Determining the critical bulking agent requirement for municipal biosolids composting, Compost Science & Utilization, 12(3), pp. 208–218.
  • [8]. Epstein, E. (2011). Industrial composting. Environmental engineering and facilities management, Taylor and Francis LLC, 2011.
  • [9]. Gómez, R.B., Lima, F.V. & Ferrer, A.S. The use of respiration indices in the composting process: a review, Waste Management & Research, 24, pp. 37–47.
  • [10]. Grigatti, M., Cavani, L. & Ciavatta, C. (2011). The evaluation of stability during the composting of different starting materials: comparison of chemical and biological parameters, Chemosphere, 83, pp. 41–48.
  • [11]. Haug, R.T. (1993). The practical handbook of compost engineering, Lewis Publishers, Boca Raton, 1993.
  • [12]. Informational materials from WTW – Measurement and analytical technical equipment (http://wtw.pl/oferta-plik/102(20.12.2015)). (in Polish)
  • [13]. Jędrczak, A. & Haziak, K. (2005). Determination of requirements for composting and other biological methods for waste processing, Zielona Góra, 2005. (in Polish)
  • [14]. Jędrczak, A. (2007). Biological processing of waste, Wydawnictwo Naukowe PWN, Warszawa 2007. (in Polish)
  • [15]. Jeris, J.S. & Regan, R.W. (1973). Controlling environmental parameters for optimum composting, Compost Science, 14(1), pp. 10–17.
  • [16]. Kilian, E. & Macedowska-Capiga, A. (2011). AT4 parameter as an indicator of stabilization degree of waste from mechanical-biological treatment, Prace Instytutu Ceramiki i Materiałów Budowlanych, 8, pp. 88–94. (in Polish)
  • [17]. Körner, I., Braukmeier, J., Herrenklage, J., Leikam, K., Ritzkowski, M., Schlegelmilch, M. & Stegmann, R. (2003). Investigation and optimization of composting process – test systems and practical examples, Waste Management, 23, pp. 17–26.
  • [18]. Lamy, E., Tran, T.C., Mottelet, S., Pauss, A. & Schoefs, O. (2013). Relationships of respiratory quotient to microbial biomass and hydrocarbon contaminant degradation during soil bioremediation, International Biodeterioration and Biodegradation, 83, pp. 85–91.
  • [19]. Malińska, K. (2012). Laboratory determination of air-filled porosity for composting materials, Inżynieria i Ochrona Środowiska, 15(2), pp.155–167. (in Polish)
  • [20]. Malińska, K. & Richard, T. (2006). The impact of physical properties and compaction on biodegradation kinetics during composting, in: ORBIT 2006: Biological Waste Management – From Local to Global, Proceedings of the International Conference ORBIT 2006, Kraft, E., Bidlingmaier, W., De Bertoldi, M. & Barth, J. (Eds.). ORBIT e.V., pp. 125–132, Weimar, Germany 2006.
  • [21]. Malińska, K., Zabochnicka-Świątek, M. (2013). Selection of bulking agents for composting of sewage sludge, Environmental Protection Engineering, 39(2), pp. 91–103.
  • [22]. Mohee, R. & Mudhoo, A. (2005). Analysis of the physical properties of an in-vessel composting matrix, Powder Technology, 155, pp. 92–99.
  • [23]. Myszograj, S., Kozłowska, K. & Krochmal, A. (2014). Evaluation of biological activity of cellulose pulp by means of the static respiration index (AT4), Civil and Environmental Engineering reports, 14(3), pp. 49–62.
  • [24]. Puyuelo, B., Gea, T. & Sánchez, A. (2010). A new control strategy for the composting process based on the oxygen uptake rate, Chemical Engineering Journal, 165, pp. 161–169.
  • [25]. Richard, T.L., Hamelers, H.V.M, Veeken, A.H.M. & Silva, T. (2002). Moisture relationships in composting processes, Compost Science and Utilization, 10, pp. 286–302.
  • [26]. Richard, T.L., Veeken, A., De Wilde, V. & Hamelers, H.V.M. (2004). Air-filled porosity and permeability relationships during solid-state fermentation, Biotechnology Progress, 20, pp. 1372–1381.
  • [27]. Rynk, R. (1992). On-farm Composting Handbook, Northeast Regional Agricultural Engineering Service.
  • [28]. Sadaka, S.S., Richard, T.L., Loecke, T.D. & Liebman, M. (2006). Determination of compost respiration rates using pressure sensors, Compost Science & Utilization, 14(2), pp. 124–131.
  • [29]. Sánchez, A., Fernández, F.J., Rodríguez, L. & Villaseñor, J. (2012). Respiration indices and stability measurements of compost through electrolytic respirometry, Journal of Environmental Management, 95, pp. 134–138.
  • [30]. Tremier, A., De Guardia, A., Massiani, C., Paul, E. & Martel, J.L. (2005). A respirometric metod for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted, Bioresource Technology, 96, pp. 169–180.
  • [31]. Veeken, A.H.M, Wilde, V. & Hamelers, H.V.M. (2003). Oxitop™ measuring system for standardized determination of the respiration rate and N-mineralization rate of organic matter in waste material, compost and soil. (http://www.nmi-agro.nl/_public/artikel/oxitop/Oxitop.pdf(20.12.2015)).
  • [32]. Villaseñor, J., Pérez, M.A., Fernández, F.J. & Puchalski, C.M. (2011). Monitoring respiration and biological stability during sludge composting with a modified dynamic respirometr, Bioresource Technology, 102, pp. 6562–6568,
  • [33]. Zieliński, M., Grala, A., Dębowski, M. & Dudek, M. (2013). Respirometric method of vulnerability assessment on the distribution of plant substrates in a mesophilic anaerobic digestion, Inżynieria Ekologiczna, 33, pp. 193–199. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7aa524a9-72ef-4dfb-8757-4d98bce83b35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.