Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Scenariusze rozwoju technologii wodorowych w mobilności w Europie
Języki publikacji
Abstrakty
This article aims to compare the time horizon of the EU hydrogen mobility policy with the potential commercialisation of this technology based on the law of market diffusion of innovation. There is growing discussion about using hydrogen as an alternative to fossil fuels in cars. This direction is further supported by EU policy and initiatives to ban the sale of new petrol and diesel cars from 2035. Alongside the development of electromobility, there is an intensification of research into technologies that will allow the widespread use of hydrogen-fuelled cars. The technology could become a future solution, primarily due to the zero-emission nature of the vehicles. However, the commercial potential of hydrogen-fuelled cars is a pertinent question. Can the interest in this technology grow sufficiently, and if so, when will it capture the early majority of the market? When can we expect hydrogen to gain a significant market share in the mobility sector? The Bass model, a reliable tool for forecasting, was used to answer these questions. The analysis of the diffusion of this innovation indicates that it is in its infancy, as its diffusion couldn’t be predicted within the time horizon adopted by the EU.
Wydawca
Czasopismo
Rocznik
Tom
Strony
23--32
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
- Wydział Zarządzania, Politechnika Wrocławska, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław
- Zakład Studiów Przestrzennych, Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej, Uniwersytet Gdański, ul. Jana Bażyńskiego 4, 80-309 Gdańsk
autor
- Wydział Informatyki i Telekomunikacji, Politechnika Wrocławska, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
- [1] A hydrogen strategy for a climate-neutral Europe. com(2020) 301 final, European Commission, 2020, Available at: https:// energy.ec.europa.eu/system/files/2020-07/hydrogen_ strategy_0.pdf, 2020.
- [2] Alanne K., Cao S., 2017, Zero-energy hydrogen economy (zeh2e) for buildings and communities including personal mobility, Renewable and Sustainable Energy Review, 71, 697-711.
- [3] Ali A., Shams A., Al-Athel K. S., Alwafi A., 2023, Saudi Arabia’s nuclear energy ambition and its compliance with IAEA guidelines for newcomers: An overview, Nuclear Engineering and Design, 411, 112448.
- [4] Bass F. M., 2004, A new product growth for model consumer durables, Management Science, 50(12), 1825-1832.
- [5] Bauckhage Ch., Kersting K., 2014, Strong regularities in growth and decline of popularity of social media services, CoRR., abs/1406,6529.
- [6] Bogel P. M., Oltra Ch., Sala R., Lores M., Upham P., Dütschke E., Schneider U., Wiemann P., 2018, The role of attitudes in technology acceptance management: Reflections on the case of hydrogen fuel cells in Europe, Journal of Cleaner Production, 188, 125-135.
- [7] Boretti A., 2024, Assessing the value of hydrogen thermal energy storage and electric thermal energy storage in NEOM city, International Journal of Hydrogen Energy, 49, Part B, 1133-1147.
- [8] Brdulak A., Chaberek G., Jagodziński J., 2021, Bass model analysis in “crossing the chasm” in e-cars innovation diffusion scenarios, Energies, 14(11), 3216.
- [9] Choi Y., Bhakta S., 2024, Hybrid solar photovoltaic-wind turbine system for on-site hydrogen production: A techno-economic feasibility analysis of hydrogen refuelling Station in South Korea’s climatic conditions, International Journal of Hydrogen Energy, (93), 736-752.
- [10] Dubent S., Mazard A., 2019, Characterization and corrosion behaviour of grade 2 titanium used in electrolyzers for hydrogen production, International Journal of Hydrogen Energy, 44(29), 15622-15633.
- [11] European Alternative Fuels Observatory. European Commission. Available at: https://alternative-fuels-observatory. ec.europa.eu/.
- [12] EAFO, Annexe III: Overview on data collection main characteristics, data quality and contact detailshttps://alternative-fuels-observatory.ec.europa.eu/system/files/documents/2025-03/Annex%20III%20for%20MOVE%20 -%20EAFO_v2%20250117.pdf.
- [13] Genovese M., Fragiacomo P., 2023, Hydrogen refuelling station: Overview of the technological status and research enhancement. Journal of Energy Storage, 61, 106758.
- [14] Helbin A., 2023, The EU has launched hydrogen subsidies, but Polish companies will have problems, Available at: https://www.wnp.pl/gazownictwo/unia-uruchomiladotacje-na-wodor-ale-polskie-firmy-beda-miec-problemy,781973.html.
- [15] Jiang K., Tian Z., Cullis I., Proud W. G., Hillmansen S., 2025, Towards sustainable mobility: A systematic review of hydrogen refuelling station security assessment and risk prevention, International Journal of Hydrogen Energy, 105, 1266-1280.
- [16] Meade N., Islam T., 2006, Modelling and forecasting the diffusion of innovation -A 25-year review, International Journal of Forecasting, 22(3), 519-545.
- [17] Meyer P. E., Winebrake J. J., 2009, Modelling technology diffusion of complementary goods: The case of hydrogen vehicles and refuelling infrastructure, Technovation, 29(2), 77-91.
- [18] Müller V. P., Besler M., van Vuuren D., Eichhammer W., 2024, Can green hydrogen drive economic transformation in Saudi Arabia? An input-output analysis of different Power-to-X configurations, Energy Conversion and Management: 24, 100798.
- [19] Pawelczyk E., Łukasik N., Wysocka I., Rogala A., Gebicki J., 2022, Recent progress on hydrogen storage and production using chemical hydrogen carriers, Energies, 15, 4964.
- [20] Pedicini R., Romagnoli M., Santangelo P. E., 2023, A critical review of polymer electrolyte membrane fuel cell systems for automotive applications: Components, materials, and comparative assessment, Energies, 16(7), 3111.
- [21] Pimenta Alves M., Gul W., Cimini C. A. Junior, Sung ha, 2022, A review on industrial perspectives and challenges on material, manufacturing, design and development of compressed hydrogen storage tanks for the transportation sector, Energies, 15(14), 5152.
- [22] Rogers E. M., Diffusion of Innovations, 1962, New York: Free Press of Glencoe: New York.
- [23] Saldan I., 2016, Decomposition and formation of magnesium borohydride, International Journal of Hydrogen Energy, 41(26), 11201-11224.
- [24] Singh S., Jain S., Venkateswaran P. S., Tivari A. K., Nouni M. R., Pandey J. K., Goel S., 2015, Hydrogen: A sustainable fuel for future of the transport sector, Renewable and Sustainable Energy Reviews, 51, 623-633.
- [25] Sinigaglia T., Lewiski F., Santos Martins M. E., Mairesse Siluk J. C., 2017, Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review, International Journal of Hydrogen Energy, 42(39), 24597-24611.
- [26]Stangarone T., 2021, South Korean efforts to transition to a hydrogen economy, Clean Technologies and Environmental Policy, 23(2), 509-516.
- [27] Yang J., Liu, Q., Zhao, Z., Zhao Z., Yuan Y., Redko R., Li S., Gao F., 2023, Hydrogen production strategy and research progress of photoelectrochemical water splitting by InGaN nanorods, International Journal of Hydrogen Energy, 48(93), 36340-36352.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7aa38051-8a10-4fdb-b598-b03d0b0d0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.