PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Suppressing Side-Lobes of Linear Phased Array of Micro-Strip Antennas with Simulation-Based Optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simulation-based optimization approach to design of phase excitation tapers for linear phased antenna arrays is presented. The design optimization process is accelerated by means of Surrogate-Based Optimization (SBO); it uses a coarse-mesh surrogate of the array element for adjusting the array’s active reflection coefficient responses and a fast surrogate of the antenna array radiation pattern. The primary optimization objective is to minimize side-lobes in the principal plane of the radiation pattern while scanning the main beam. The optimization outcome is a set of element phase excitation tapers versus the scan angle. The design objectives are evaluated at the high fidelity level of description using simulations of the discrete electromagnetic model of the entire array so that the effects of element coupling and other possible interaction within the array structure are accounted for. At the same time, the optimization process is fast due to SBO. Performance and numerical cost of the approach are demonstrated by optimizing a 16-element linear array of microstrip antennas. Experimental verification has been carried out for a manufactured prototype of the optimized array. It demonstrates good agreement between the radiation patterns obtained from simulations and from physical measurements (the latter constructed through superposition of the measured element patterns).
Rocznik
Strony
193--203
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Reykjavik University, Engineering Optimization & Modeling Center, Menntavegur 1, 109 Reykjavik, Iceland
autor
  • Reykjavik University, Engineering Optimization & Modeling Center, Menntavegur 1, 109 Reykjavik, Iceland
  • Reykjavik University, Engineering Optimization & Modeling Center, Menntavegur 1, 109 Reykjavik, Iceland
Bibliografia
  • [1] Mailloux, R.J. (2005). Phased Array Antenna Hanbook. Artech House.
  • [2] Amitay, N., Butzien, P., Heidt, R. (1968). Match optimization of a two-port phased array antenna element. IEEE Transactions on Antennas Propag., 16(1), 1947‒57.
  • [3] De Ford, J.F., Gandhi, O.P. (1988). Phase-only synthesis of minimum peak sidelobe patterns for linear and planar arrays. IEEE Trans. Antennas Prop., 36(2), 191‒201.
  • [4] De Ford, J.F., Gandhi, O.P. (1988). Mutual coupling and sidelobe tapers in phase-only antenna synthesis for linear and planar arrays. IEEE Trans. Antennas Prop., 36(11), 1624‒1629.
  • [5] Haupt, R.L. (1995). Optimum quantized low sidelobe phase tapers for arrays. Electronics Lett., 31(14), 1117‒1118.
  • [6] Bray, M.G., Werner, D.H. (2002). Optimization of Thinned Aperiodic Linear Phased Arrays Using Genetic Algorithms to Reduce Grating Lobes During Scanning. IEEE Transactions on Antennas Propag., 50(12), 1732‒1742.
  • [7] Boeringer, D.W., Werner, D.H. (2004). Particle Swarm Optimization Versus Genetic Algorithms for Phased Array Synthesis. IEEE Transactions on Antennas Propag., 52(3), 771‒779.
  • [8] Yang, S.H., Kiang, J.F. (2014). Adjustment of Beamwidth and Side-Lobe Level of Large Phased-Arrays Using Particle Swarm Optimization Technique. IEEE Transactions on Antennas Propag., 62(1), 138‒144.
  • [9] Chryssomallis, M.T., Christodoulou, C.G. (2004). A Circuit-Based Optimization Approach for Improving the Pattern of Uniform Array Antennas via Phase Control. IEEE Transactions on Antennas Propag., 52(10), 2776‒2781.
  • [10] Kozieł, S., Ogurtsov, S. (2014). Antenna design by simulation-driven optimization. Springer.
  • [11] Kozieł, S., Ogurtsov, S. (2014). Simulation-Based Design of Microstrip Linear Antenna Arrays Using Fast Radiation Response Surrogates. IEEE Antennas Wireless Propag. Lett., DOI: 10.1109/LAWP.2014.2377519.
  • [12] Kozieł, S., Ogurtsov, S. (2014). Phase-spacing optimization of linear microstrip antenna arrays by EMbased superposition models. Proc. 2014 Loughboroh Antenna Propag. Conf. (LAPC), 26‒30.
  • [13] Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J. (2004). Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52(1), 337‒361.
  • [14] ORCER RF-35, Data Sheet, 2014, Taconic, 136 Coonbrook Rd., Petersburgh, N.Y. 12138, USA, http://www.taconic-add.com/pdf/rf35.pdf
  • [15] CST Microwave Studio, ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2013.
  • [16] Koziel, S., Ogurtsov, S. (2012). Linear antenna array synthesis using gradient-based optimization with analytical derivative. Proc. 2012 IEEE APS Intl. Sympos.
Uwagi
EN
The authors would like to thank Computer Simulation Technology AG, Darmstadt, Germany, for making CST Microwave Studio available. This work was supported in part by the Icelandic Centre for Research (RANNIS) under grant no. 141272051.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7aa1e4c8-0f72-462c-9da7-d778eabe3916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.