PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An analysis of the load-bearing capacity of timber-concrete composite beams with profiled sheeting

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza nośności belek zespolonych drewniano-betonowych z płytą betonową na blasze fałdowej
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.
PL
Analizie poddano belki zespolone drewniano-betonowe składające się z prostokątnej belki drewnianej oraz płyty betonowej wylanej na blasze fałdowej. Współpracę belki z płytą zapewniają specjalne stalowe łączniki, które są przedmiotem zgłoszenia patentowego. W referacie przedstawiono wyniki analiz numerycznych dotyczących wpływu rodzaju stalowych blach fałdowych, na których wykonywane są płyty żelbetowe współpracujące z drewnianymi belkami. Okazuje się, że rodzaj blachy fałdowej służącej jako deskowanie i jako element mogący współpracować z betonową płytą, ma istotny wpływ nie tylko na wytrzymałość samej płyty, ale również na nośność i sztywność belki zespolonej drewniano-betonowej.
Rocznik
Tom
Strony
143--156
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Poznań, Poland
  • Poznan University of Technology, Poznań, Poland
autor
  • Poznan University of Technology, Poznań, Poland
Bibliografia
  • 1. Radomski W.: Research and bridge applications of high-performance lightweight concrete in Poland, in: Proceedings of the 4th International Conference on Current and Future Trends in Bridge Design, Construction and Maintenance, Kuala Lumpur 10-11 October 2005, 402-411.
  • 2. Biegus A., Lorenc W.: Development of shear connections in steel-concrete composite structures, Civil And Environmental Engineering Reports, 15, 4 (2014) 23-32.
  • 3. Chybiński M., Garstecki A.: Diagonal versus orthogonal ribs in stability of steel I beams, Procedia Engineering, 172 (2017) 172-177.
  • 4. Ciesielczyk K., Studziński R.: Experimental and numerical investigation of stabilization of thin-walled Z-beams by sandwich panels, Journal of Constructional Steel Research, 133 (2017) 77-83.
  • 5. Czarnecki L., Kaproń M., Piasecki M., Wall S.: Budownictwo zrównoważone budownictwem przyszłości, Inżynieria i Budownictwo, 68, 1 (2012) 18-21.
  • 6. Czarnecki L., Kaproń M.: Ocena środowiskowa budynków a zrównoważone budownictwo, Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska, 59, 3/12/III (2012) 301-314.
  • 7. Dankova J., Mec P., Majstrikova T.: Stiffness analysis of glued connection of the timber-concrete structure, Open Engineering, 6 (2016) 241-249.
  • 8. Denisiewicz A., Kuczma M.: Two-Scale Modelling of Reactive Powder Concrete. Part III: Experimental Tests and Validation, Engineering Transactions, 63, 1, 55–76, 2015.
  • 9. Dolejs J., Tunega I., Hatlman V.: Experiments with high performance steel and composite members, Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska, 52, 264 (2009) 33-42.
  • 10. Gutkowski R., Brown K., Shigidi A., Natterer J.: Laboratory tests of composite wood-concrete beams, Construction and Building Materials, 22 (2008) 1059-1066.
  • 11. Hicks S., Composite slabs, Dissemination of information workshop, Brussels 18-20 February 2008.
  • 12. Kmiecik P., Kamiński M., Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration, Archives of Civil and Mechanical Engineering, 11, 3 (2011) 623-636.
  • 13. Kozioł P., Kożuch M., Lorenc W., Rowiński S.: Innovative solution of transition zone in steel-concrete hybrid beam, in: Recent Progress in steel and composite structures, edit. M. Giżejowski, A. Kozłowski, J. Marcinowski, J. Ziółko, CRC Press-Taylor & Francis Group 2016.
  • 14. Jankowiak I., Analysis of RC beams strengthened by CFRP strips – Experimental and FEA study, Archives of Civil and Mechanical Engineering, 12, 3 (2012) 376-388.
  • 15. Jankowiak I., Madaj A., Load carrying capacity of RC beams strengthened by pre-tensioned CFRP strips, in: Recent advances in computational mechanics: proceedings of the 20th International Conference on Computer Methods in Mechanics (CMM 2013), Poznań, 27-31 August, 2013, edit. T. Łodygowski, J. Rakowski, P. Litewka, CRC Press 2014.
  • 16. Jasiczak J., Wdowska A., Rudnicki T.: Betony ultrawysokowartościowe – właściwości, technologie, zastosowania, Stowarzyszenie Producentów Cementu, Kraków 2008.
  • 17. Łukaszewska E., Johnsson H., Fragiacomo M., Performance of connections for prefabricated timber-concrete composite floors, Materials and Structures, 41 (2008) 1533-1550.
  • 18. Moody R., Hernandez R.: Glued-Laminated Timber, in: Engineered wood products - A guide for specifiers, designers and users, edit. S. Smulski, PFS Research Foundation 1997, 1-39.
  • 19. Nie J., Cai C.S.: Steel-Concrete Composite Beams Considering Shear Slip Effects, Journal of Structural Engineering, 129, 4 (2003) 495-506.
  • 20. Nie J., Cai C.S., Wang T.: Stiffness and capacity of steel-concrete composite beams with profiled sheeting, Engineering Structures, 27 (2005) 1074-1085.
  • 21. Pawłowski D., Szumigała M.: Flexural behaviour of full-scale basalt FRP RC beams – experimental and numerical studies, Procedia Engineering, 108 (2015) 518-525.
  • 22. PN-EN 1992-1-1, Projektowanie konstrukcji betonowych. Część 1-1: Reguły ogólne i reguły dla budynków.
  • 23. PN-EN 1993-1-1, Projektowanie konstrukcji stalowych. Część 1-1: Reguły ogólne i reguły dla budynków.
  • 24. PN-EN 1994-1-1, Projektowanie konstrukcji zespolonych stalowo-betonowych – Część 1-1: Reguły ogólne i reguły dla budynków.
  • 25. PN-EN 1995-1-1, Projektowanie konstrukcji drewnianych. Część 1-1: Reguły ogólne i reguły dla budynków.
  • 26. Schafers M., Werner S.: Investigation on bonding between timber and ultra-high performance concrete (UHPC), Conctruction and Buiding Materials, 25, 7 (2011) 3078-3088.
  • 27. Szewczak I., Rzeszut K.: Pilotażowe badania eksperymentalne cienkościennych belek stalowych typu sigma wzmocnionych taśmami CFRP, Materiały Budowlane, 11 (2016) 84-85.
  • 28. Szumigała E., Szumigała M., Polus Ł.: A numerical analysis of the resistance and stiffness of the timber and concrete composite beam, Civil And Environmental Engineering Reports, 15, 4 (2014) 139-150.
  • 29. Szumigała M., Polus Ł.: Applications of aluminium and concrete composite structures, Procedia Engineering, 108 (2015) 544-549.
  • 30. Żurawski J.: Szkoła projektowania, Cz. 1, Projektowanie zrównoważone, Izolacje, 1, 15 (2010) 96-98.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a9e57d8-e34e-43fa-bb77-38001ff40696
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.