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Abstract
The presented work is an experimental investigation into the waves generated by a pressure source moving in 
a straight channel. Wave fields generated by the moving pressure source are described and the effects of angle 
of attack on the generated wave height, surfable wave quality, drag and vertical forces are presented. The main 
objective of this study was to investigate the relationship between the angle of attack and the generated wave 
height across the towing tank width and the surfable wave quality. The investigations were conducted at the 
Australian Maritime College towing tank on a wavedozer at four different attack angles at various speeds. Three 
wave probes were installed across the channel to record the generated wave heights. Based on the experimental 
results, it was concluded that smaller angles of attack produced higher quality surfable waves compared to 
larger angles of attack, while the height of the generated wave has a direct relationship with the angle of attack. 
By comparing the forces for different models, it was concluded that the pressure source with the lowest angle 
of attack has the minimum drag but maximum displacement.

Introduction

Usually the waves generated by high-speed 
vessels moving in shallow water are considered to 
be environmental and safety hazards in confined 
waters. Vessel generated waves, their associated 
disturbances to other vessels in ports and harbours, 
shoreline erosion and their impact on marine life are 
some of the most important issues in this field (Mac-
farlane, 2012). Field studies have been conducted at 
several locations where problems of this nature have 
occurred (Nanson et al., 1994; Macfarlane & Cox, 
2004; Macfarlane, Cox & Bradbury, 2008).

The wash waves generated by vessels can be 
characterized in terms of the waterway bathyme-
try, hull shape (Renilson & Lenz, 1989) and oper-
ating conditions (Robbins et al., 2011). Due to the 
great interest in wake-wash effects, a considerable 
amount of research has been conducted in recent 
years. In model experimental studies, the focus has 
been on designing low-wash ships and acquiring 

reliable data for validation (Zibell & Grollius, 1999; 
Koushan, Werenskiold & Zhao, 2001; Macfarlane, 
Bose & Duffy, 2012).

Waterway bathymetry has an influence on the 
generated wash waves’ characteristics (Javanmardi 
et al., 2017). Natural and man-made water chan-
nels often have non-rectangular cross sections. It is 
important to understand how channel geometry 
affects the evolution of waves in water channels of 
arbitrary shape. Several studies have been conduct-
ed on waves propagating in channels with arbitrary 
cross-section profiles (Peters, 1966; Peregrine, 1968) 
and on wave patterns in two horizontal dimensions 
generated by a disturbance moving at speeds close to 
the critical Froude number in channels with a rect-
angular cross-section (Ertekin, Webster & Wehau-
sen, 1986; Katsis & Akylas, 1987; Pedersen, 1988; 
Mathew & Akylas, 1990; Teng & Wu, 1997; Jiang, 
Henn & Sharma, 2002; Liu & Wu, 2004). Accord-
ing to the results, the wavelength and time tak-
en for wave generation were affected by both the 
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submerged channel cross-sectional geometry and the 
channel sidewall slope at the waterline. The meth-
od was based on Boussinesq-type equations usually 
used for the far-field flow on slender-bodies for the 
near-ship flow; this method is shown to be able to 
predict 2D wave propagation and waves far from the 
vessel in a rectangular channel.

In addition to the above reasons for conducting 
wake wave studies, such waves can be considered 
with respect to surfing (Schmied et al., 2011; Javan-
mardi et al., 2013, 2017; Javanmardi, 2015). A new 
surf pool concept was developed by Greg Webber; 
his idea to produce continuously breaking waves 
was patented (Webber, 2004; 2006) by Liquid Time 
Pty Ltd. This invention is based on a circular pool 
in which the waves for surfing are created contin-
uously along the banks of the pool (Schmied et al., 
2011). The idea was born from Webber’s experienc-
es surfing in the Clarence River on waves generat-
ed behind a fishing boat. Webber’s idea is based on 
one or more pressure sources being rotated within 
an annular wave pool to generate waves. A pressure 
source is any object that disrupts the water’s surface 
and creates a wave. The circular channel has slop-
ing bathymetry with the outer side being deeper; the 
waves are generated in the deep water and break in 
the shallow water on the inner island. 

Regardless of waterway bathymetry, the mov-
ing vessel parameters have a great influence on the 
generated wave characteristics. This study investi-
gates the effect of angle of attack on the generated 
waves and forces experimentally, where the angle of 
attack is the relative angle between the entry surface 
and the water surface. A wavedozer was used as the 
pressure source. The investigations were conducted 
at the Australian Maritime College towing tank on 
a wavedozer at four different angles of attack at vari-
ous speeds. Three wave probes were installed across 
the channel to record the generated wave heights. 

Two load cells were installed to measure drag and 
vertical forces. 

Experimental setups

The experiment was conducted at the Austra-
lian Maritime College (AMC) towing tank which 
is 100 m in length and 3.5 m in width. The towing 
tank is equipped with a powered carriage for tow-
ing models and has a maximum speed of 4.0 m/s, 
it is capable of maintaining a constant speed with-
in ± 0.01 m/s in either forward or reverse. The car-
riage is equipped with data acquisition equipment 
to analyse the signals measured from resistance 
and sea-keeping experimental setup. The tank also 
has wave absorbers at each side and beaches at the 
end of the towing tank that dissipate the wave after 
each run in order to calm the water prior to the next 
run. Three resistance wave probes were positioned 
at 0.75, 1.0 and 1.25 m from the centre-line of the 
model to record the elevation of the vessel-generated 
waves with respect to time (Figure 1). Wave height 
was defined as the trough to crest height of the first 
significant waves, as shown in Figure 2.
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Figure 1. Wave probe setup relative to centreline of pressure 
source (top view)

 
 

-50 

-40 

-30 

-20 

-10 

0 

10 

20 

30 

40 

5 10 15 20 25 30 35 

W
av

e 
H

ei
gh

t (
m

m
) 

Time (s) 

WP1 

Crest 

Trough 

Bow Wave 

wave height 

Figure 2. Wave height measurement from wave probe 1
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A wavedozer was used as a pressure source to 
generate waves. The wavedozer was a wedge shape 
body with constant beam (Driscoll & Renilson, 
1980). Towing tank tests were conducted with water 
depth of 1.5 m and a wavedozer of 0.3 m beam and 
0.1  m draft. Table 1 presents the wavedozer char-
acteristics. The model was attached to the carriage 
using a two post towing system. The model was 
fixed and therefore no sinkage or trim was permitted 
during the test runs. Two load cells were installed 
at the connection between each towing post and the 
model to measure the vertical (lift) and longitudinal 
(drag) forces. Figure 3 shows the wavedozer and 
load cells’ positions and Figure 4 shows the wave-
dozer attached to the carriage at the Australian Mar-
itime College (AMC) towing tank. The model was 
tested for varying Froude depth numbers (Frh) from 
0.4 to 1.0, where Froude depth number (Javanmardi 
et al., 2012) is based on the calm water depth and is 
defined by equation (1):

	
gh
VFrh   

 

	 (1)

where: V is the speed of wavedozer (m/s), g is grav-
itational acceleration (m/s2) and h is the depth of 
calm water of the channel (m).

Results and discussion

Drag and vertical forces

The drag forces recorded by load cell 1 at four 
different angles of attack: 4°, 7°, 10° and 14°; and 
at various Frh are presented in Figure 5. It can be 
seen that the drag forces gradually increase at high-
er Frh for all tested angles of attack. The drag force 
is directly proportional to the speed. While there is 
no significant difference between the recorded drag 
forces for all four angles of attack at low Frh, as the 
Frh increases, the difference between measured drag 
forces is significantly larger. The drag force at an 
angle of attack of 14° is noticeably the highest at all 
Frh, while the lowest drag force was recorded for an 
angle of attack of 4°; however, the displacement of 
the wavedozer at angle of attack of 4° is almost four 
times larger than at 14°. This is due to the change 
in pressure gradient, which affects the pressure drag 
of the wavedozer. It was previously shown numer-
ically that about 95% of the drag is attributed to 
pressure forces. There is water separation from the 
side walls and transom of the wavedozer and that 
portion which causes frictional drag is only about 
5% of the total drag (Javanmardi, 2015); therefore, 
viscous drag does not have a significant influence on 
the total drag.
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Figure 5. Measured drag at different angle of attack for dif-
ferent Frh

Figure 6 shows the measured vertical forces for 
angles of attack of 4°, 7°, 10° and 14° at various Frh. 
The plot shows the same trend as drag force. It is 
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Figure 3. Wavedozer load cells’ positions

Figure 4. Wavedozer model attached to the towing tank 
carriage

Table 1. Wavedozer particulars

Length 
(mm)

Draft 
(mm)

Beam 
(mm)

Angle  
of Attack 
(degree)

Waterline 
length (m)

Displace-
ment (m3)

2150 100 302

4 1.429 0.022
7 0.814 0.012

10 0.576 0.009
14 0.401 0.006
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clearly shown that the vertical force increases with 
increasing Frh. It can be seen that angle of attack of 
14° has the highest vertical force at all Frh.
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Figure 6. Measured vertical force for different Frh at differ-
ent angle of attack

Wave Height Comparison

Figure 7 shows wave height measured at WP1 at 
various Froude depth numbers for different angles 
of attack. It can be seen that the generated wave 
height at angle of attack of 4° (AoA 4) at low Frh is 
the lowest. The wave height for all angles of attack 
decreased from Frh 0.8 to 0.95. The generated wave 

height at angle of attack of 14° (AoA 14) is larg-
er than other angles of attack at high Froude depth 
numbers.

Wave Quality

The quality of a wave can be defined by the change 
of the wave’s height across the channel. A wave with 
constant height has the best quality. Figure 8 shows 
an example of wave quality which was quantified by 
Hartley (Hartley, 2012). To determine which con-
ditions produced high quality waves, the measured 
wave heights from WP1, WP2 and WP3 are plotted 
with respect to lateral distances in Figures 9 to 12. 
By comparing all the measured wave heights and lat-
eral distances, it was found that an angle of attack of 
4° (AoA 4) produced the best quality wave.

It was observed that waves at Frh larger than 0.8 
at an angle of attack of 4°, and Frh = 0.76 at 7° pro-
duced the only good quality waves. By comparing 
all the conditions, it is obvious that Frh  =  0.81 at 
AoA 4 produced the best wave quality. It can be seen 
that the wave height at Frh = 0.81 was the highest 
wave at all three wave probes.

 

Figure 8. Example of high quality wave (left) and low quality 
wave (right) (Hartley, 2012)
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Figure 9. Wave quality comparison at angle of attack of 4° 
for different Frh
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Figure 7. Measured vertical force for different Frh at differ-
ent angle of attack
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Conclusions

In this research the effect of angle of attack on 
quality of waves produced by a pressure source has 
been investigated. The wavedozer was tested at four 
different angles of attack and various Frh at AMC’s 
towing tank.

By comparing forces measured by the load cells, 
the lowest value was recorded for an angle of attack 
of 4°, while displacement was the largest at an angle 
of attack of 4°; hence, it can be concluded that 

increasing displacement due to change of angle of 
attack will generate good quality waves with low-
er forces. Nevertheless, it is strongly recommend-
ed that the relationship between displacements due 
to changes in beam dimension and drag forces be 
investigated in the future.

In general, the attack angle of the wavedozer 
has a significant effect on the wave quality. Accord-
ing to the results, a small angle of attack produces 
a high quality surfable wave with a lower power 
requirement.
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