PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Resistive memory physical mechanism in a thin-film Ag/YBa2Cu3O7-x/Ag structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Mechanizm fizyczny pamięci rezystancyjnej w cienkowarstwowej strukturze Ag/YBa2Cu3O7-x/Ag
Języki publikacji
EN
Abstrakty
EN
This paper presents results of experimental research on the electro-resistance memory effect in a thin-film Ag/YBa2Cu3O7-x/Ag structure at temperatures of 78K to 300K. This phenomenon was explained by processes of destruction and recovery the oxygen-depleted layers situated close to electrodes and within the superconductor volume. The processes occur through ion electro-diffusion by numerous oxygen vacancies existing in perovskite-type materials.
PL
W pracy przedstawiono wyniki badań doświadczalnych zjawiska pamięci elektrorezystancyjnej w strukturze cienkowarstwowej Ag/YBa2Cu3O7-x/Ag w temperaturach od 78K do 300K. Zjawisko to wyjaśniono procesami likwidacji i odtwarzania warstw zubożonych w jony tlenu, znajdujących się w sąsiedztwie elektrod oraz w objętości nadprzewodnika. Procesy te zachodzą na drodze elektrodyfuzji jonów poprzez liczne wakansy tlenowe obecne w materiałach typu perowskitu.
Rocznik
Strony
313--317
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
  • Białystok University of Technology, Faculty of Electrical Engineering, ul. Wiejska 45d, 15-351 Białystok
  • Białystok University of Technology, Faculty of Electrical Engineering, ul. Wiejska 45d, 15-351 Białystok
Bibliografia
  • [1] Freitas R.F., Wilcke W.W., Storage-class memory: The next storage system, IBM J. Res. Dev., 52 (2008), 439.
  • [2] Choi B.J., Jeong D.S., Kim S.K. et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition, J. Applied Physics, 98 (2005), 033715.
  • [3] Hickmott T.W., J. Applied Physics, 33 (1962), 2669.
  • [4] Gibbons J.F., Beadle W.E., Solid-State Electron., 7 (1964), 785.
  • [5] Acha C., Electric pulse-induced resistive switching in ceramic YBa2Cu3O7-δ/Au interfaces, Physica B, 404 (2009), n.18, 2746-2748.
  • [6] Tomasek M., Plecenik T., Truchly M. et al., Temperature dependence of the resistance switching effect studied on the metal/YBa2Cu3O6+x planar junctions, Journal of Vacuum Science and Technology B, 29 (2011), n.1, 01AD04(1-5).
  • [7] Tulina N.A., Borisenko I.Yu., Sirotkin V.V., Reproducible resistive switching effect for memory applications in heterocontacts based on strongly correlated electron systems, Physics Letters A, 372 (2008), n.44, 6681-6686.
  • [8] Hanada A., Kinoshita K., Matsubara K. et al., Developmental mechanism for the resistance change effect in perovskite oxide-based resistive random access memory consisting of Bi2Sr2CaCu2O8+δ bulk single crystal, Journal of Applied Physics, 110 (2011), n.8, 084506(1-5).
  • [9] Nian Y.B., Strozier J., Wu N.J. et al., Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides, Physical Review Letters, 98 (2007), 146403.
  • [10] Lee S.B., Kim A., Lee J.S. et al., Appl. Phys. Lett., 97 (2010), 093505.
  • [11] Gołębiowski J., Waśkiewicz J., Resistive memory effect in a thin-film structure based on YBa2Cu3O7-x superconductor, Przegląd Elektrotechniczny, 89 (2013), n.8, 83-6.
  • [12] Schulman A., Rozenberg M.J., Acha C., Anomalous time relaxation of the nonvolatile resistive state in bipolar resistiveswitching oxide-based memories, Physical Review B, 86 (2012), n.10, 104426(1-5).
  • [13] Rozenberg M.J., Sanchez M.J., Weht R. et al., Mechanism for bipolar resistive switching in transition-metal oxides, Physical Review B, 81 (2010), n.11, 115101(1-5).
  • [14] Taskin A.A., Lavrov A.N., Ando Y., Achieving fast oxygen diffusion in perovskites by cation ordering, Applied Physics Letters, 86 (2005), n.9, 91910-13.
  • [15] Tu K.N., Yeh N.C., Park S.I. et al., Physical Review B, 39 (1989), 304.
  • [16] Grajcar M., Plecenik A., Darula M., et al., Surface degradation of YBa2Cu3O7-delta observed by means of contact resistance measurement, Solid State Communications, 81 (1992), n.2, 191-4.
  • [17] Schulman A., Acha C., Resistive switching effects on the spatial distribution of phases in metal-complex oxide interfaces, Physica B, 407 (2012), 3147-49.
  • [18] Dietz G.W., Antpohler W., Klee M. et al., Electrode influence on the charge transport through SrTiO3 thin films, Journal of Applied Physics, 78 (1995), n.10, 6113-21.
  • [19] Dedyk A.I., Kanareykin A.D., Nenasheva E.A. et al., I-V and C-V characteristics of ceramic materials based on barium strontium titanate, Technical Physics, 51 (2006), n.9, 1168-73.
  • [20] Plakida N.M., High temperature superconductivity: experiment and theory, Springer, Berlin, 1995, 237p.
  • [21] Nozdrin Yu.N., Pesto E.E., Kurin V.V. et al., Effect of the microstructure of epitaxial YBa2Cu3O7-x films on their electrophysical and nonlinear microwave properties, Physics of The Solid State, 48 (2006), n.12, 2260-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a9b2579-ac62-42f6-b016-6beaca0a986e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.