PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of the emission characteristics of a dual-fuel gas turbine combustion chamber operating simultaneously on liquid and gaseous fuels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is dedicated to investigations of the working process in a dual-fuel low-emission combustion chamber for a floating vessel’s gas turbine. As the object of the research, a low-emission gas turbine combustion chamber with partial premixing of fuel and air inside the outer and inner radial-axial swirls was chosen. The method of the research is based on the numerical solution of the system of differential equations which represent the physical process of mass and energy conservation and transformations and species transport for a multi-component chemically reactive turbulent system, considering nitrogen oxides formation and a discrete ordinates model of radiation. The chemistry kinetics is presented by the 6-step mechanism of combustion. Seven fuel supply operating modes, varying from 100% gaseous fuel to 100% liquid fuel, have been analysed. This analysis has revealed the possibility of the application of computational fluid dynamics for problems of dual-fuel combustion chambers for the design of a floating vessel’s gas turbine. Moreover, the study has shown the possibility of working in different transitional gaseous and liquid fuel supply modes, as they satisfy modern ecological requirements. The dependencies of the averaged temperature, NO, and CO concentrations along the length of the low-emission gas turbine combustion chamber for different cases of fuel supply are presented. Depending on the different operating modes, the calculated emission of nitrogen oxides NO and carbon monoxide CO at the outlet cross-section of a flame tube are different, but, they lie in the ranges of 31‒50 and 23‒24 mg/nm3 on the peak of 100% liquid fuel supply mode. At operating modes where a gaseous fuel supply prevails, nitrogen oxide NO and carbon monoxide CO emissions lie in the ranges of 1.2‒4.0 and 0.04‒18 mg/nm3 respectively.
Rocznik
Tom
Strony
85--95
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Geroes of Ukraine, 54025 Mikolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Geroes of Ukraine, 54025 Mikolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Geroes of Ukraine, 54025 Mikolayiv, Ukraine
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. A. Duggal and J. Minnebo, ‘The Floating Production, Storage and Offloading system – past, present and future’, in Offshore Technology Conference, Houston, Texas, USA, May 05, 2020, 2020, doi.org/10.4043/30514-MS.
  • 2. M. M. L. Reis and W. L. R. Gallo, ‘Study of waste heat recovery potential and optimization of the power production by an organic Rankine cycle in an FPSO unit’, Energy Convers. Manag., vol. 157, pp. 409–422, 2018, doi. org/10.1016/j.enconman.2017.12.015.
  • 3. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units’, Pol. Marit. Res., vol. 26, no. 3, pp. 181–187, 2019, doi. org/10.2478/pomr-2019-0059.
  • 4. M. Aligoodarz, M. Soleimanitehrani, H. Karrabi, and F. Ehsaniderakhshan, ‘Numerical simulation of SGT-600 gas turbine combustor, flow characteristics analysis, and sensitivity measurement with respect to the main fuel holes diameter’, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., vol. 230, no. 13, pp. 2379–2391, 2016, doi.org/10.1177/0954410015625663.
  • 5. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products’, Pol. Marit. Res., vol. 26, no. 4, pp. 149–156, 2019, http://doi.org/10.2478/pomr-2019-0077, doi.org/10.2478/ pomr-2019-0077.
  • 6. J. A. Vidoza, J. G. Andreasen, F. Haglind, M. M. L. dos Reis, and W. Gallo, ‘Design and optimization of power hubs for Brazilian off-shore oil production units’, Energy (Oxf.), vol. 176, pp. 656–666, 2019.
  • 7. C. Waldhelm, ‘Application of gas turbines on floater vessel for power generation service’, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery, 1998.
  • 8. S. Serbin, B. Diasamidze, and M. Dzida, ‘Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine’, Pol. Marit. Res., vol. 27, no. 3, pp. 89–99, 2020.
  • 9. Directive 2013/39/EU of the European Parliament and of the Council, Europa.eu, 2008. [Online]. Available: https:// eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:20 13:226:0001:0017:EN:PDF. [Accessed: 05 Mar 2021].
  • 10. S. Di Iorio, A. Magno, E. Mancaruso, and B. M. Vaglieco, ‘Analysis of the effects of diesel/methane dual fuel combustion on nitrogen oxides and particle formation through optical investigation in a real engine’, Fuel Process. Technol., vol. 159, pp. 200–210, 2017.
  • 11. S. I. Serbin, ‘Modeling and experimental study of operation process in a gas turbine combustor with a plasma-chemical element’, Combust. Sci. Technol., vol. 139, no. 1, pp. 137–158, 1998.
  • 12. B. T. Diasamidze, S. V. Vilkul, and S. I. Serbin, ‘Theoretical investigations of a dual-fuel low-emission gas turbine combustor’, NTU KhPI Bull. Power Heat Eng. Process. Equip., no. 1, pp. 27–33, 2020.
  • 13. C. K. Law, Combustion Physics. Cambridge, England: Cambridge University Press, 2010.
  • 14. J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 3rd ed. Berlin, Germany: Springer, 2013.
  • 15. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence. London: Academic Press.
  • 16. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, ‘Investigations of the working process in a ‘lean-burn’ gas turbine combustor with plasma assistance’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 39, no. 12, pp. 3331–3335, 2011.
  • 17. D. Choudhury, Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Incorporated, 1973.
  • 18. B. Magnussen, ‘On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow’, in 19th Aerospace Sciences Meeting, St Louis, MO, USA,1981.
  • 19. S. B. Pope, ‘Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation’, Combust. Theory Model., vol. 1, no. 1, pp. 41–63, 1997.
  • 20. F. Wang, Y. Huang, and T. Deng, ‘Gas turbine combustor simulation with various turbulent combustion models’, in ASME Turbo Expo 2009: Power for Land, Sea, and Air, June 8–12, 2009, Orlando, Florida, USA, Volume 2: Combustion, Fuels and Emissions, 2009.
  • 21. A. C. Benim, S. Iqbal, W. Meier, F. Joos, and A. Wiedermann, ‘Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor’, Appl. Therm. Eng., vol. 110, pp. 202–212, 2017.
  • 22. Turbulence, heat and mass transfer: Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer,ed.by K. Hanjalic, Palermo, Italy, 24-27 September, 2012.
  • 23. I. V. Novosselov and P. C. Malte, ‘Development and application of an eight-step global mechanism for CFD and CRN simulations of lean-premixed combustors’, J. Eng. Gas Turbines Power, vol. 130, no. 2, 2008.
  • 24. I. Matveev, S. Matveeva, S. Serbin, ‘Design and Preliminary Test Results of the Plasma Assisted Tornado Combustor’, Collection of Technical Papers - 43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA 2007-5628, vol. 6, 2007, pp. 6091-6098.
  • 25. G. M. Faeth, ‘Structure and atomization properties of dense turbulent sprays’, Symp. (Int.) Combust., vol. 23, no. 1, pp. 1345–1352, 1991.
  • 26. S. James, M. Anand, and S. Pope, ‘The Lagrangian PDF transport method for simulations of gas turbine combustor flows’, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indiannapolis, Indiana, USA, 2002.
  • 27. G. Faeth, ‘Spray combustion models - A review’, in 17th Aerospace Sciences Meeting, New Orleans, USA, 1979.
  • 28. W. A. Fiveland and A. S. Jamaluddin, ‘Three-dimensional spectral radiative heat transfer solutions by the discreteordinates method’, J. Thermophys. Heat Transf., vol. 5, no. 3, pp. 335–339, 1991.
  • 29. S. I. Serbin, A. V. Kozlovskyi, and K. S. Burunsuz, ‘Investigations of nonstationary processes in low emissive gas turbine combustor with plasma assistance’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 44, no. 12, pp. 2960–2964, 2016.
  • 30. I. B. Matveev, S. I. Serbin, V. V. Vilkul, and N. A. Goncharova, ‘Synthesis gas afterburner based on an injector type plasmaassisted combustion system’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 43, no. 12, pp. 3974–3978, 2015.
  • 31. I. Matveev, S. Serbin, T. Butcher, N. Tutu, “Flow Structure investigation in a “Tornado” Combustor,” Collection of Technical Papers - 4th International Energy Conversion Engineering Conference, vol. 2, 2006, pp. 1001-1013.
  • 32. S. Serbin., A. Kozlovskyi, K. Burunsuz, ‘Influence of plasma-chemical products on process stability in a lowemission gas turbine combustion chamber’, International Journal of Turbo and Jet Engines, 2021. Available from: https://doi.org/10.1515/tjeng-2020-0046.
  • 33. G. F. Romanovsky, S. I. Serbin, V. M. Patlaychuk, Modern Gas Turbine Units of Russia and Ukraine. Mikolayiv: NUK, 2005.
  • 34. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, ‘Plasma-assisted reforming of natural gas for GTL: Part II—modeling of the methane–oxygen reformer’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 43, no. 12, pp. 3964–3968, 2015.
  • 35. S. I. Serbin, I. B. Matveev, and N. A. Goncharova, ‘Plasmaassisted reforming of natural gas for GTL—part I’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 42, no. 12, pp. 3896–3900, 2014.
  • 36. I. B. Matveev, A. A. Tropina, S. I. Serbin, and V. Y. Kostyuk, ‘Arc Modeling in a Plasmatron Channel’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 36, no. 1, pp. 293–298, 2008.
  • 37. I. Matveev, S. Serbin, A. Mostipanenko, ‘Numerical Optimization of the “Tornado” Combustor Aerodynamic Parameters’, in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA 2007-391, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a95f694-4808-4115-9d1d-d934347301d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.