PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the end-of-life the front suspension beam of a vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the article is focused on assessing the degree of end-of-life for the vehicle front suspension beam. The first stage of the problem taken was represented by a road test of the vehicle at distance expressed by 100.000 km. Following the end of the operation tests, the suspension beam was dismantled and subjected to laboratory tests. The tests demonstrated numerous beam top layer plastic deformations, which came into being as a result of the vehicle driving onto an obstacle on the roadway or onto raised road infrastructure elements. At the point of connection of the stabiliser rod to the beam, surface degradation was noted, which consisted in the considerable change of the surface profile, hardness reduction and the grey and dark brown colour. Corrosion regions and fretting wear traces were noted. Corrosion pits, scratches and material build-ups was observed. The analysis of the chemical composition of wear products demonstrated the presence of elements such as iron, oxygen, chlorine and silicon, as an effect of operational conditions.
Rocznik
Strony
446--454
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • State University of Applied Sciences in Nowy Sącz, ul. Zamenhofa 1a, 33-300 Nowy Sącz, Poland
  • State University of Applied Sciences in Nowy Sącz, ul. Zamenhofa 1a, 33-300 Nowy Sącz, Poland
  • State University of Applied Sciences in Nowy Sącz, ul. Zamenhofa 1a, 33-300 Nowy Sącz, Poland
Bibliografia
  • 1. Baydoun S, Fouvry S, Descartes S. Modeling contact size effect on fretting wear: a combined contact oxygenation - third body approach. Wear 2022; 488-489: 204168, https://doi.org/10.1016/j.wear.2021.204168.
  • 2. Caban J, Litak G, Ambrożkiewicz B, Gardyński L, Stączek P, Wolszczak P. Possibilities of energy harvesting from the suspension system of the internal combustion engine in a vehicle. Communications 2021; 23(2): 106-116, https://doi.org/10.26552/com.C.2021.2.B106-B116.
  • 3. Cecchel S, Ferrario D. Numerical and experimental analysis of a high pressure die casting Aluminum suspension cross beam for light commercial vehicles. La Metallurgia Italiana 2016: 41-44.
  • 4. Cecchel S, Ferrario D, Panvini A, Cornacchia G. Lightweight of a cross beam for commercial vehicles: Development, testing and validation. Materials and Design 2018: 122-134, https://doi.org/10.1016/j.matdes.2018.04.021.
  • 5. Chen K, He S, Xu E, Tang R, Wang Y. Research on ride comfort analysis and hierarchical optimization of heavy vehicles with coupled nonlinear dynamics of suspension. Measurement 2020; 165: 108142, https://doi.org/10.1016/j.measurement.2020.108142
  • 6. Dukalski P, Będkowski B, Parczewski K, Wnęk H, Urbaś A, Augustynek K. Dynamics of the vehicle rear suspension system with electric motors mountedin wheels. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21(1): 125-136, https://doi. org/10.17531/ein.2019.1.14.
  • 7. Hryciów Z, Krasoń W, Wysocki J. Evaluation of the influence of friction in a multi-leaf spring on the working conditions of a truck driver. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23(3): 422-429, https://doi.org/10.17531/ein.2021.3.3.
  • 8. Jifan H, Jinfang P, Yanping R, Zhenbing C, Jianhua L, Minhao Z. Study on improving fretting wear properties of AISI 4135 steel via diverse surface modifications under grease lubrication. Wear 2022; 490-491: 204210, https://doi.org/10.1016/j.wear.2021.204210.
  • 9. Kong Y, Bennett CJ, Hyde CJ. A computationally efficient method for the prediction of fretting wear in practical engineering applications. Tribology International 2022; 165: 107317, https://doi.org/10.1016/j.triboint.2021.107317
  • 10. Lee D, Yang C. An analytical approach for design and performance evaluation of torsion beam rear suspension. Finite Elements in Analysis and Design 2013; 63: 98-106, https://doi.org/10.1016/j.finel.2012.09.002
  • 11. Kurek A, Kurek M, Łagoda T. Stress-life curve for high and low cycle fatigue. Journal of Theoretical and Applied Mechanics, Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej 2019; 53(3): 677-684, https://doi.org/0.15632/jtam-pl/110126.
  • 12. Kurek A, Łagoda T. Fracture of elastic-brittle and elastic-plastic material in cantilever cyclic bending. Frattura ed Integrita Strutturale 2019; 13(48): 42-49, https://doi.org/10.3221/IGF-ESIS.48.06.
  • 13. Machno M, Matras A, Szkoda M. Modelling and Analysis of the Effect of EDM-Drilling Parameters on the Machining Performance of Inconel 718 Using the RSM and ANNs Methods. Materials 2022; 15 (3): 1152, https://doi.org/10.3390/ma15031152.
  • 14. Matuszewski M. Directivity of the geometrical structure of the surface in the transformation of the surface layer, Bydgoszcz: Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego, 2013.
  • 15. Misaghi S, Tirado C, Nazarian S, Carrasco C. Impact of pavement roughness and suspension systems on vehicle dynamic loads on flexible pavements, Transportation Engineering 2021; 3: 100045, https://doi.org/10.1016/j.treng.2021.100045.
  • 16. Nagentrau M, Mohd Tobi AL, Jamian S, Otsuka Y, Hussin R. Delamination-fretting wear failure evaluation at HAp-Ti-6Al–4V interface of uncemented artificial hip implant, Journal of the Mechanical Behavior of Biomedical Materials 2021; 122: 104657, https://doi.org/10.1016/j.jmbbm.2021.104657.
  • 17. Niemczewska-Wójcik M, Pethuraj M, Uthayakumar M, Majid MSA. Characteristics of the Surface Topography and Tribological Properties of Reinforced Aluminium Matrix Composite, Materials 2022, 15(1): 358, https://doi.org/10.3390/ma15010358.
  • 18. Niemczewska-Wójcik M, Wójcik A. The multi-scale analysis of ceramic surface topography created in abrasive machining process, Measurement: Journal of the International Measurement Confederation 2020; 166: 108217, https://doi.org/10.1016/j.measurement.2020.108217.
  • 19. Rubach M, Waluś KJ. The system of removing slush in passenger cars - a concept; Autobusy 2018; 12: 217-220.
  • 20. Shen F, Ke L-L, Zhou K. A debris layer evolution-based model for predicting both fretting wear and fretting fatigue lifetime. International Journal of Fatigue 2021; 142: 105928, https:doi.org/10.1016/j.ijfatigue.2020.105928.
  • 21. Shipway PH, Kirk AM, Bennett CJ, Zhu T. Understanding and modelling wear rates and mechanisms in fretting via the concept of ratedetermining processes - Contact oxygenation, debris formation and debris ejection. Wear 2021; 486-487: 204066, https://doi.org/10.1016/j.wear.2021.204066.
  • 22. Sistla P, Kang H. Twist Beam Suspension Design and Analysis for Vehicle Handling and Rollover Behavior. SAE Technical Paper 2010; 01-0085, https://doi.org/10.4271/2010-01-0085.
  • 23. Sun L. Optimum design of road-friendly vehicle suspension systems subjected to rough pavement surfaces. Applied Mathematical Modelling 2002; 26: 35–652, https://doi.org/10.1016/S0307-904X(01)00079-8.
  • 24. Theunissen J, Tota A, Gruber P, Dhaens M, Sorniotti A. Preview-based techniques for vehicle suspension control: a state-of-the-art review. Annual Reviews in Control 2021; 51: 206-235, https://doi.org/10.1016/j.arcontrol.2021.03.010.
  • 25. Walczak S. Analysis of dynamic loads on various types of independent car wheel suspension, Kraków: PhD thesis. Cracow University of Technology, 2003.
  • 26. Wicher J. Safety of cars and road traffic, Warszawa: Wydawnictwo Łączności i Komunikacji, 2012.
  • 27. Xu S, Ferraris A, Giancarlo Airale A, Carello M. Elasto-kinematics design of an innovative composite material suspension system, Mechanical Sciences 2017; 8:11-22, https://doi.org/10.5194/ms-8-11-2017.
  • 28. Zhan J, Zhang F, Siahkouhi M, Kong X, Xia H. A damage identification method for connections of adjacent box-beam bridges using vehicle–bridge interaction analysis and model updating. Engineering Structures 2021; 228: 111551, https://doi.org/10.1016/j.engstruct.2020.111551.
  • 29. Zhang S, Liu L, Ma X, Zhu G, Tan W. Effect of the third body layer formed at different temperature on fretting wear behavior of 316 stainless steel in the composite fretting motion of slip and impact. Wear 2022; 492-493: 204220, https://doi.org/10.1016/j.wear.2021.204220.
  • 30. Zhao LH, Zheng SL, Feng JZ. Failure mode analysis of torsion beam rear suspension under service conditions. Engineering Failure Analysis 2014; 36: 39-48, 10.1016/j.engfailanal.2013.09.008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a952be1-baae-4a58-843c-b1bc0ece6b88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.