PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Manufacturing and characterization of gellan gum – zinc oxide composites as potential biomaterials for wound treatment

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to produce gellan gum-based hydrogels with the addition of zinc oxide as a potential dressing material. Hydrogels with ZnO concentrations of 0.01%, 0.02% and 0.04% were prepared, micrometric and nanometric ZnO particles were used, and a CaCl2 crosslinker was added to one part of the samples. All samples (14 types) produced by the freeze drying method were characterized with high swelling properties (>2000%), what is important to ensure the absorption of exudates from wounds. Samples with ZnO particles cross-linked with CaCl2 lost less mass after incubation in aqueous media and were characterized by better dimensional stability than those without crosslinking. The pH of the extracts of the samples containing ZnO particles was more neutral (pH 7.0-7.6) than that of the control gellan gum samples (pH of 5.5-6.1). The zinc release from cross-linked samples was twice as high for those containing nanometric particles than for micrometric particles (1.94 ± 0.04 mg/l and 0.93 ± 0.02, respectively). Relatively large amounts of released zinc species in the case of samples containing ZnO nanoparticles are promising in the context of the antibacterial properties and treatment of infected wounds. A lower amount of zinc released from samples with ZnO microparticles could be sufficient to prevent the development of the infection. Furthermore, both materials show satisfactory cytocompatibility with L929 fibroblasts, as shown by Alamar blue and live/dead viability tests, making them prospective candidates for wound healing
Rocznik
Strony
2--8
Opis fizyczny
Bibliogr. 15 poz., tab., wykr., zdj.
Twórcy
autor
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Jia B., Li G., Cao E., Luo J., Zhao X., Huang H.: Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio. 19 (2023) 100582.
  • [2] Palumbo F.S., Federico S.., Pitarresi G., Fiorica C., Giammona G.: Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr Polym. 229 (2020) 115430.
  • [3] Das M., Giri T.K.: Hydrogels based on gellan gum in cell delivery and drug delivery. J Drug Deliv Sci Technol. 56 (2020) 101586.
  • [4] Gomes D., Batista-Silva J.P., Sousa A., Passarinha L.A.: Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr Polym. 311 (2023) 120782.
  • [5] Lee S., Choi J.H., Park A., Rim M., Youn J., Lee W., et al.: Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. Int J Biol Macromol. 158 (2020) 452-460.
  • [6] Yu I., Kaonis S., Chen R.: A Study on Degradation Behavior of 3D Printed Gellan Gum Scaffolds. Procedia CIRP. 65 (2017) 78-83.
  • [7] Gering C., Párraga J., Vuorenpää H., Botero L., Miettinen S., Kellomäki M.: Bioactivated gellan gum hydrogels affect cellular rearrangement and cell response in vascular co-culture and subcutaneous implant models. Biomater Adv. 143 (2022) 213185.
  • [8] Reczyńska-Kolman K., Hartman K., Kwiecień K., BrzychczyWłoch M., Pamuła E.: Composites Based on Gellan Gum, Alginate and Nisin-Enriched Lipid Nanoparticles for the Treatment of Infected Wounds. Int J Mol Sci. 23(1) (2021) 321.
  • [9] Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M, Ann L.C., Bakhori S.K.M., et al.: Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 7(3) (2015) 219-242.
  • [10] Alshameri A.W., Owais M.: Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OpenNano. 8 (2022) 100077.
  • [11] Ghanbari M., Sadjadinia A., Zahmatkesh N., Mohandes F., Dolatyar B., Zeynali B., et al.: Synthesis and investigation of physicochemical properties of alginate dialdehyde/gelatin/ZnO nanocomposites as injectable hydrogels. Polym Test. 110 (2022) 107562.
  • [12] Hamid R., Rotshteyn Y., Rabadi L., Parikh R., Bullock P.: Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro. 18(5) (2004) 703-710.
  • [13] Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S, Santhoshkumar T., Bagavan A., et al: Novel microbial route to synthesize
  • ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc. 90 (2012) 78-84.
  • [14] Ahmed Kadhum S.: The Effect of two Types of Nano-Particles (ZnO and SiO2) on Different Types of Bacterial Growth. Biomed Pharmacol J. 10(4) (2017) 1701-1708.
  • [15] Cierech M., Wojnarowicz J., Kolenda A., Krawczyk-Balska A., Prochwicz E., Woźniak B., et al.: Zinc Oxide Nanoparticles Cytotoxicity and Release from Newly Formed PMMA–ZnO Nanocomposites Designed for Denture Bases. Nanomaterials. 9(9) (2019) 1318.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a91d0f8-0e18-4ce5-b328-54d514d8ec4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.