Tytuł artykułu
Identyfikatory
Warianty tytułu
Metoda oceny trwałości eksploatacyjnej powłok w oparciu o pomiary prądowe
Języki publikacji
Abstrakty
The work presents the study of coatings made in the process of magnetron sputtering of AISI310S grade chromium-nickel steel. The study covered coatings of the steel’s composition with an additions of 2–5% Si and of 2–5% Al. The coatings provided a resistance element in the electric circuit, and the measurement of their temperature was made by the voltage drop indirect method. It was found that the steel coatings had a resistance of 0.176 Ω within the entire range of testing temperature, and their failure occurred at a temperature of 350oC due to cracking and delamination from the substrate. Introducing the Si or Al addition to the coatings resulted in an increase in coating resistance and temperature stability, to 450 and 400oC, respectively. It was found that the durability evaluation method to influence coatings performance characteristics.
W pracy przedstawiono badania powłok PVD wykonanych w procesie magnetronowego rozpylania stali chromowo-niklowej gatunku X8CrNi25-21. Badano powłoki o składzie stali z domieszkami krzemu 2–5% i aluminium 2–5%. Badano trwałość powłok w temperaturach indukowanych przepływem prądu elektrycznego. Wykazano, że powłoki osadzone na monokrystalicznym krzemie posiadają rezystancję 0,176 Ω, a ich uszkodzenie następuje w temperaturze 3500C. Wprowadzenie do powłok domieszek krzemu lub aluminium powoduje wzrost ich oporności oraz trwałości temperaturowej odpowiednio do 450 i 400o C. Stwierdzono, że metoda oceny trwałości powłok ma wpływ na właściwości eksploatacyjne.
Czasopismo
Rocznik
Tom
Strony
4919--4926, CD6
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Institute of Materials Engineering
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Institute of Materials Engineering
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, Institute of Materials Science
autor
- Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Materials Science and Engineering
autor
- Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Materials Science and Engineering
Bibliografia
- [1] BSS Assoc., Elevated temperature physical properties of stainless steels (www.bssa.org.uk, 04.06.2014).
- [2] Danielewski M.: Introduction to fundamentals of corrosion in gases, ASM Handbook Vol. 13A: Corrosion: fundamentals, testing, and protection, Eds. S.D. Cramer, B.S. Covino Jr., ASM Materials Park, 87–89, Ohio, 2003.
- [3] Gheno T., Monceau D., Young D.J.: Mechanism of breakaway oxidation of Fe–Cr and Fe–Cr–Ni alloys in dry and wet carbon dioxide, 222–233, Corrosion Science 64, 2012.
- [4] Kobayashi K., Yamaguchi K., Hayakawa M., Kimura M.: High-temperature fatigue properties of austenitic superalloys 718, A286 and 304L, 1978–1984, International Journal of Fatigue 30, 2008.
- [5] Kucharska B.: PVD coatings made of chrome-nickel modified with additives Al, Ir, Re and Ru , Mo-nografie no. 21, Publishing House of the Czestochowa University of Technology, Czestochowa 2011 (in Polish).
- [6] Li H., Jiang B., Yang B.: Study on crystalline to amorphous structure transition of Cr coatings by magnetron sputtering, 935–939, Applied Surface Science 258, 2011.
- [7] Liu Z., He Y., Gao W.: Surface Nanocrystalization of 310S Stainless Steel and Its Effect on Oxidation Behavior, 88–92, Journal of Materials Engineering and Performance 7(1) February, 1998.
- [8] Mrowec S.: Kinetics and mechanism of the oxidation of metal, Śląsk Publishing House, Katowice, 1982 (in Polish).
- [9] Orear J.: Fizyka, Scientific and Technical Publishers, Warsaw, 1980.
- [10] Piwowar S.: Welding and electric welding, School and Pedagogic Publishers, Warsaw, 1979 (in Polish).
- [11] Posadowski W.M., Wiatrowski A.: The development of techniques and technologies magnetron sputtering, 35-38, Elektronika 1, 50, 2009 (in Polish).
- [12] Spalik M., Kucharska B., Kulej. E, Wilk J.: Resistance properties of heat-resisting steel-based PVD coatings, Inżynieria Materiałowa, Nr 2/2014.
- [13] Tsai Wen-Ta, Huang Kuo-En: Microstructural aspect and oxidation resistance of an aluminide coating on 310 stainless steel, 164–168, Thin Solid Films 366, 2000.
- [14] Wendler B.: Functional coatings by PVD and CVD methods, Publishing House of the Institute for Sustainable Technologies – National Research Institute, Radom, 2011.
- [15] Won Kyun Na, Hyung Mi Lim, Soo Hyun Huh, Sang Eon Park, Youn-Seoung Lee, Seung Ho Lee: Effect of the average particle size and the surface oxidation layer of silicon on the colloidal silica particle through direct oxidation, 82–87, Materials Science and Engineering B 163, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a9008ee-3c94-46dc-88e9-9ad3a86cc7a6