PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissolution kinetics of malachite in ethylene diamine phosphate solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ethylene diamine phosphate (EDP), as a synthetic organic reagent, was used for the first time to leach malachite, and a new method of using organic amine to leach copper oxide ore was developed. The effects of stirring speed, particle size, reagent concentration, and reaction temperature on EDP-dissolution malachite were investigated. Results showed that malachite rapidly dissolved in EDP solution. The malachite-dissolving rate also increased with increased reagent concentration, increased reaction temperature, and decreased particle size. Stirring speed exhibited nearly no effect on EDP-induced malachite dissolution. The leaching kinetics was found to follow the shrinking-core model, and dissolution was controlled by surface chemical reaction with an activation energy of 52.63kJ×mol−1. A semiempirical rate equation was obtained to describe the dissolution process expressed as 1-(1-XCu)1/3=0.0149(CEDP)0.7814 × (Pmalachite)−0.7982×exp(−6.3308/T) ×t.
Rocznik
Strony
1039--1048
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wz.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
Bibliografia
  • ARZUTUG, M. E., KOCAKERIM, M. M., ÇOPUR, M., 2004. Leaching of malachite ore in NH3-saturated water. Ind. Eng. Chem. Res. 43, 4118-4123.
  • ATA, O.N., ÇOLAK, S., EKINCI, Z., ÇOPUR,M., 2001. Determination of the optimum conditions for leaching of malachite ore in H2SO4 Solutions. Chem. Eng. Technol. 24, 409-413.
  • AWAKURA, Y., HIRATO, T., KAGAWA, A., YAMADA, Y., Majima, H., 1991. Dissolution of malachite in aqueous ethylenediaminetetraacetate solution. Metall. Trans. B. 22, 569-574.
  • BALL, J. W., NORDSTROM, D. K., 2001. User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters [R/OL].Menlo Park, California: U.S. Geological Survey. https://wwwbrr.cr.usgs.gov/projects/GWC_chemtherm/pubs/wq4fdoc.pdf.
  • BINGÖL, D., CANBAZOĞLU, M., AYDOĞAN, S., 2005. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching. Hydrometallurgy 76, 55-62.
  • BINGÖL, D., CANBAZOĞLU, M., 2004. Dissolution kinetics of malachite in sulphuric acid. Hydrometallurgy 72, 59-165.
  • ÇALBAN, T., ÇOLAK, S., YEŞIYURT, M., 2005. Optimization of leaching of copper from oxidized copper ore in NH3-(NH4)2SO4medium. Chem. Eng. Commun. 92, 1515-1524.
  • DATTA, A., DATTA, D., CHANDRA, A., 2016. Separation and recovery of copper from aqueous solutions using tri-n-butyl phosphate in benzene. J. Mol. Liq. 221, 139-148.
  • DENG, J. S., WEN, S. M., YIN, Q., WU, D. D.,SUN, Q. W., 2017. Leaching of malachite using 5-sulfosalicylic acid. J. Taiwan. Inst. Chem. E. 71, 20-27.
  • EKMEKYAPER, A., AKTAŞ, E., KÜNKÜL, A., DEMİRKIRAN, N., 2012. Investigation of Leaching Kinetics of Copper from Malachite Ore in Ammonium Nitrate Solutions. Metall. Trans. B. 43B, 764-772.
  • EKMEKYAPAR, A., DEMIRKIRAN, N., KÜNKÜL, A., AKTAŞ, E., 2015. Leaching of malachite ore in ammonium sulfate solutions and production of copper oxide. Braz. J. Chem. Eng. 32, 155-165.
  • FENG, Q. C., WEN, S. M., ZHAO, W. J., LV, C., BAI, X., 2015. Leaching of copper from malachite with methane-sulfonic acid. Solvent. In: Solvent Extraction Research and Devlopment, Japan. 22(2). pp. 159–168.
  • FENG, Q. C., ZHAO, W. J., WEN, S. M., 2017. Copper sulfide species formed on malachite surfaces in relation to flotation. J. Ind. Eng. Chem. 48, 125-132.
  • FENG, Q. C., ZHAO, W. J., WEN, S. M., 2018a. Surface modificationof malachite with ethanediamine and its effect on sulfidization flotation. Appl. Surf. Sci. 436, 823-831.
  • FENG, Q. C., ZHAO, W. J., WEN, S. M., 2018b. Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation. J. Alloy. Compd. 744, 301-309.
  • GHOSH, A., DATTA, D., USLU, H., BAMUFLEH, H. S., KUMAR, S., 2018. Separation of copper ion (Cu2+) from aqueous solution using tri n butyl phosphate and di 2 ethylhexyl phosphoric acid as extractants. J. Mol. Liq. 258, 147-154.
  • HABBACHE, N., ALANE, N., DJERAD, S., TIFOUTI, L., 2009. Leaching of copper oxide with different acid solutions. Chem. Eng. J. 152, 503-508.
  • HSU, P., MURR, L. E., 1975. A simple kinetic model for sulfuric acid leaching of copper from chrysocolla. Metall. Trans. B. 6, 435-440.
  • HU, K. J., WU, A. X., WANG, H. J., WANG, S. Y., 2016. A new heterotrophic strain for bioleaching of low grade complex copper ore. Minerals 2016, 6 (1), 12.
  • JAIN, N., SHARMA, D., 2004. Biohydrometallurgy for nonsulfidic minerals—A review. Geomicrobiol. J. 21, 135–144.
  • KÜNKÜL, A., GÜLEZGIN, A., DEMIRKIRAN, N., 2013. Investigation of the use of ammonium acetate as an alternative lixiviant in the leaching of malachite ore. Chem. Ind. Chem. Eng. Q. 19, 25-34.
  • LAMBERT, F., GAYDARDZHIEV, S., LEONARD, G., LEWIS, G., BAREEL, P. F., BASTIN, D., 2015. Copper leaching from waste electric cables by biohydrometallurgy. Miner. Eng. 76, 38–46.
  • LEVENSPIEL, O., 1999. Chemical Reaction Engineering.Third ed. John Wiley & Sons, Inc.
  • LIU, W., TANG, M. T., TANG, C. B., HE, J., YANG, S. H., YANG., 2010. Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. T. Nonferr. Metal. Soc. 20, 910-917.
  • LWAMBIYI, M., MAWEJA, K., KONGOLO, K., LWAMBIYI, N. M., DIYAMBI, M., 2009. Investigation into the heap leaching of copper ore from the Disele deposit. Hydrometallurgy 98, 177-180.
  • NICOL, M. J., 2018. The kinetics of the dissolution of malachite in acid solutions. Hydrometallurgy 177, 214-217.
  • SHEN, P.L., LIU, D.W., XU, X.H., JIA, X.D., ZHANG, X.L., LIU, D., LIU, R.Z., 2018. Effect of ethylene diamine phosphate on the sulfidization flotation of chrysocolla. Minerals 8, 216.
  • TANDA, B. C., EKSTEEN, J. J., ORABY, E. A., 2017. An investigation into the leaching behaviour ofcopper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy 167, 153-162.
  • TANAYDIN, M.K., DEMİRKIAN, N., 2018. Investigation of selective leaching and kinetics of copper from malachite ore in aqueous perchloric acid solutions. Sep. Sci. Technol. Published online.https://doi.org/10.1080/01496395.2018.1512619.
  • XU, X. J., 2000. The Theory of Oxidized Mineral Flotation Using Organic Chelating Agents as Activators.Yunnan Science & Technology Press, Kunming, China.
  • YANG, X. W., QIU, D. F., 2011. Hydrometallurgy. Second Ed. Metallurgical Industry Press, Beijing, China.
  • WANG, X., CHEN, Q. Y., HU, H. P., YIN, Z. Y., XIAO, Z. L., 2009. Solubility prediction of malachite in aqueous ammoniacal ammonium chloride solutions at 25 °C. Hydrometallurgy 99, 231-237.
  • WANG, Z. K., CHE, J. T., YE, C. L., 2010. Application of ferric chloride both as oxidant and complexant to enhance the dissolution of metallic copper. Hydrometallurgy 105, 69-74.
  • WU, D. D., WEN, S. M., YANG, J., DENG, J. S., JIANG, L., 2013. Dissolution kinetics of malachite as an alternative copper source with an organic leach reagent. J. Chem. Eng. Jpn. 46, 677-682.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a8f9d9d-e269-4ede-acc1-cc72e55ddff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.