Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper identifies and describes the parameters of a numerical model generating the microstructure in the integrated heating-remelting-cooling process of steel specimens. The numerical model allows the heating-remelting-cooling process to be simulated comprehensively. The model is based on the Monte Carlo (MC) method and the finite element method (FEM), and works within the entire volume of the steel sample, contrary to previous studies, in which calculations were carried out for selected, relatively small areas. Experimental studies constituting the basis for the identification and description of model parameters such as: probability function, initial number of orientations, number of cells and number of MC steps were carried out using the Gleeble 3800 thermo-mechanical simulator. The use of GPU capabilities improved the performance of the numerical model and significantly reduced the simulation time. Thanks to the significant acceleration of simulation times, it became possible to comprehensively implement a numerical model of the heating-transformation-cooling process in the entire volume of the test sample. The paper is supplemented by results of performance tests of the numerical model and results of simulation tests.
Czasopismo
Rocznik
Tom
Strony
72--79
Opis fizyczny
Bibliogr. 24 poz., il., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Poland
autor
- AGH University of Science and Technology, Poland
autor
- AGH University of Science and Technology, Poland
autor
- AGH University of Science and Technology, Poland
Bibliografia
- [1] Hojny, M. (2018). Modeling steel deformation in the semi-solid state. Switzerland: Springer.
- [2] Hojny, M., Głowacki, M., Bała, P., Bednarczyk, P. & Zalecki, W. (2019). A multiscale model of heating- remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system., Archives of Metallurgy and Materials. 64(1), 401-412. DOI: 10.24425/amm.2019.126266.
- [3] Tong, M., Li, D. & Li, Y. (2004). Modeling the austenite – ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Materialia. 52(5), 1155-1162. DOI:10.1016/j.actamat.2003.11.006.
- [4] Tong, M., Li, D. & Li, Y. (2005). A q-state Potts model based Monte Carlo method used to model the isothermal austenite – ferrite transformation under non-equilibrium interface condition. Acta Materialia. 53(5), 1485-1497. DOI:10.1016/j.actamat.2004.12.002.
- [5] Mathea, P. & Novak, E. (2007). Simple Monte Carlo and the metropolis algorithm. Journal of Complexity. 23, 673-696. DOI:10.1016/j.jco.2007.05.002.
- [6] Saito, Y. & Enomoto, M., (1992). Monte carlo simulation of grain growth. ISIL International. 32(3), 267-274.
- [7] Blikstein, P. & Tschipschin, A.P. (1996). Monte Carlo simulation of grain growth. Materials Research. 2(3), 133- 137.
- [8] Shonkwiler, R.W., Mendivil, F. (2009). Explorations in Monte Carlo methods. Springer.
- [9] Gao, J. & Thompson, R.G. (1997). Monte Carlo simulation of solidification. Superalloys. 718, 625, 706, 77-86.
- [10] Das, A. & Fan, Z. (2004). A Monte Carlo simulation of solidification structure formation under melt shearing. Materials Science and Engineering. 365(1-2), 330-335. DOI: 10.1016/j.msea.2003.09.043.
- [11] Zhu, P., Smith R.W. (1992). A Monte Carlo simulation of microstructural evolution during solidification. Modeling of Coarsening and Grain Growth. 85-99.
- [12] Rodgers, T., Mitchell, J. & Tikare, V. (2017). A Monte Carlo model for 3D grain evolution during welding. Modelling and Simulation in Materials Science and Engineering. 25(6), 064006. DOI: 10.1088/1361-651X/aa7f20.
- [13] Schmidt, R. (1987). The Monte Carlo method in welding practice. Welding International. 1(10), 983-985. https://doi.org/10.1080/09507118709449049.
- [14] Haire, K.R., Windle, A.H. (2001). Monte Carlo simulation of polymer welding. Computational and Theoretical Computer Polymer Science. 11(3), 167-250. https://doi.org/10.1016/S1089-3156(00)00011-8.
- [15] Zhang, Z.Q., Wu, M., Grujicic, Z. & Wan, Y. (2016). Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6. Journal of Materials Science. 51(4), 1882-1895. DOI:10.1007/s10853-015-9495-x.
- [16] Yang, Z., Sista, S., Elmer, J. W. & Debroy, T. (2000). Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium. Acta Materialia. 48, 4813-4825.
- [17] NVIDIA® CUDA™ Architecture - Introduction & Overview. Retrieved July 17, 2022, from https://developer.download.nvidia.com/compute/cuda/docs/C UDA_Architecture_Overview.pdf.
- [18] Jia, X., Gu, X., Graves, Y.J., Folkerts, M. & Jiang, S.B. (2011). GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Journal Physics in Medicine & Biology. 56(22), 7017-7031. DOI: 10.1088/0031- 9155/56/22/002.
- [19] Patro, R., Dickerson, J.P., Bista, S., Gupta, S.K., Varshney, A. (2012). Speeding up particle trajectory simulation sunder moving force fields using GPUs. Retrieved July 17, 2022, from https://www.cs.umd.edu/~varshney/papers/gpu_tweezers.pdf.
- [20] GPU Acceleration of molecular modeling applications. Retrieved July 17, 2022, from https://www.ks.uiuc.edu/Research/gpu/. [21] VMD. Visual molecular dynamics. Retrieved July 17, 2022, from https://www.ks.uiuc.edu/Research/vmd/.
- [22] Stone, J.E., Phillips, J.C, Freddolino, P.L., Hardy, D.J., Trabuco, L.G. & Schulten, K. (2007). Accelerating molecular modeling applications with graphics processors. Journal of Computational Chemistry. 28(16), 2618-2640. DOI 10.1002/jcc.20829.
- [23] Voort, G.V. (2013). Grain size measurement: the saltykov rectangle. Retrieved July 17, 2022, from https://vacaero.com/information-resources/metallography-with-george-vandervoort/1286-grain-size-measurement-the-saltykov-rectangle.html.
- [24] Saltykov, S. (1958). Stereometric Metallography. (2nd edn.). Metallurgizdat. New York.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a88a607-95bb-4568-957d-6359645e3e31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.