Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study analyzes the effects of an underwater explosion recorded in the Baltic Sea on September 26, 2022, with coordinates: 54.675 North and 15.574 East at a depth of 76.2 m. Based on data from the seismic monitoring system, the detonated charges were estimated at 750 kg of TNT. Then, the empirical equations of R. H. Cole and Warren D. Reid were used to calculate water pressure distribution and determine the danger zones for marine technology, ships, people, and sea fauna. The results are presented in graphical and tabular form. Based on the calculations, the explosion impact area was determined at over 6,700 m from the epicenter.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
53--68
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Mechanical and Electrical Engineering Faculty, Polish Naval Academy in Gdynia, Poland
autor
- Mechanical and Electrical Engineering Faculty, Polish Naval Academy in Gdynia, Poland
Bibliografia
- 1. Wybuchy gazociągu Nord Stream [MAPA + PODSUMOWANIE] [Nord Stream gas pipeline explosions [MAP + SUMMARY] - in Polish] Available online: https://biqdata.wyborcza.pl/biqdata/7,159116,28964060,wybuchy-gazociagu-nord-stream-mapa-podsumowanie.html (accessed on 2 November 2022).
- 2. GEUS Has Recorded Shaking in the Baltic Sea Available online: https://eng.geus.dk/about/news/news-archive/2022/september/baltic (accessed on 2 November 2022).
- 3. Komu zależało na uszkodzeniu gazociągu Nord Stream - WysokieNapiecie.pl Available online: https://wysokienapiecie.pl/76494-komu-zalezalo-na-uszkodzeniu-gazociagu-nord-stream/ (accessed on 20 December 2022).
- 4. Vakulenko, S. Shock and Awe: Who Attacked the Nord Stream Pipelines? Available online: https://carnegieendowment.org/politika/88062 (accessed on 2 November 2022).
- 5. CNN: W pobliżu wycieków z Nord Stream zaobserwowano rosyjskie okręty [CNN: Russian ships spotted near Nord Stream leaks - in Polish] Available online: https://gospodarka.dziennik.pl/news/artykuly/8558200,rosyjskie-okrety-wyciek-gazociagi-nord-stream.html (accessed on 2 November 2022).
- 6. Pleasance, C. FOURTH Leak Is Uncovered in Nord Stream Pipes after “Russian Sabotage” Available online: https://www.dailymail.co.uk/news/article-11261669/FOURTH-leak-uncovered-Nord-Stream-pipes-Russian-sabotage.html (accessed on 2 November 2022).
- 7. Olejnik, A. Trends in the Development of Unmanned Marine Technology. Polish Hyperbaric Research 2016, 55, 7–28, doi:10.1515/phr-2016-0008.
- 8. Jurczyk, K.; Piskur, P.; Szymak, P. Parameters Identification of the Flexible Fin Kinematics Model Using Vision and Genetic Algorithms. Polish Maritime Research 2020.
- 9. Cole, R.H. Underwater Explosions; Princeton University Press: New Jersey, 1948;
- 10. Geers, T.L.; Hunter, K.S. An Integrated Wave-Effects Model for an Underwater Explosion Bubble; Boulder, 2002;
- 11. Kiciński, R.; Szturomski, B. Pressure Wave Caused by Trinitrotoluene (TNT) Underwater Explosion—Short Review. Applied Sciences 2020, 10, 3433, doi:10.3390/app10103433.
- 12. Reid, W.D. The Response of Surface Ships to Underwater Explosions; General document / DSTO; DSTO Aeronautical and Maritime Research Laboratory: Melbourne, Vic, 1996;
- 13. Szturomski, B. Modelowanie Oddziaływania Wybuchu Podwodnego Na Kadłub Okrętu w Ujęciu Numerycznym [Modeling the Effect of the Underwater Explosion to Hull Board in a Numberic Concept - in Polish]; Akademia Marynarki Wojennej: Gdynia, 2016;
- 14. Wang, Q.X.; Yeo, K.S.; Khoo, B.C.; Lam, K.Y. Nonlinear Interaction between Gas Bubble and Free Surface. Computers & Fluids 1996, 25, 607–628, doi:10.1016/0045-7930(96)00007-2.
- 15. Stiepanow, W.C.; Sipilin, P.M.; Nawagin, J.S.; Pankratow, W.P. Tłoczenie Wybuchowe [Stamping with an Explosion - in Polish]; Wydawnictwa Naukowo - Techniczne, 1968;
- 16. Vannucchi de Camargo, F. Survey on Experimental and Numerical Approaches to Model Underwater Explosions. Journal of Marine Science and Engineering 2019, 7, 15, doi:10.3390/jmse7010015.
- 17. Nowak, P.R.; Gajewski, T.; Peksa, P.; Sielicki, P.W. Experimental Verification of Different Analytical Approaches for Estimating Underwater Explosives. International Journal of Protective Structures 2022, 20414196221120510, doi:10.1177/20414196221120511.
- 18. Cudny, K.; Powierża, Z. Wybrane Zagadnienia Odporności Udarowej Okrętów [Selected Issues of Ship Impact Resistance - in Polish]; Gdynia, 1978;
- 19. Price, R. S.; Zuke, W. G.; Infosino, C. A Study of Underwater Explosions in a High Gravity Tank.
- 20. STANAG 4137 (CLASSIFIED) Standard Underwater Explosion Test for Operational Surface Ships and Crafts 1976.
- 21. Inspektorat Uzbrojenia, [Armament Inspectorate] Metodyka Nr 12, Sprawdzenie Wymagań w Zakresie Odporności Na Narażenia Mechaniczne [Methodology No. 12, Checking the Requirements for Resistance to Mechanical Damage - in Polish] 2017.
- 22. Counter Improvised Explosive Devices POST BLAST COLLECTION & ANALYSIS - NATO Training. Madryt, 2021.
- 23. Baker, K.; Epperson, D.; Gitschlag, G.; Goldstein, H.; Lewandowski, J.; Skrupky, K.; Smith, B.; Turk, T. National Standards for a Protected Species Observer and Data Management Program: A Model Using Geological and Geophysical Surveys; 2013;
- 24. Yelverton, J.; Richmond, D.; Hicks, W.; Saunders, K.; Fletcher, E. The Relationship between Fish Size and Their Response to Underwater Blast.
- 25. Sanderson, H.; Czub, M.; Koschinski, S.; Tougaard, J.; Sveegaard, S.; Jakacki, J.; Fauser, P.; Frey, T.; Bełdowski, J.; Beck, A.; et al. Environmental Impact of Sabotage of the Nord Stream Pipelines; In Review, 2023;
- 26. Cui, P.; Zhang, A.-M.; Wang, S. Small-Charge Underwater Explosion Bubble Experiments under Various Boundary Conditions. Physics of Fluids 2016, 28, 117103, doi:10.1063/1.4967700.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a8732fb-e739-4051-ae00-38f55359dfbf