PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of leaching tests in the context of the influence of the fly ash on the environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The leachability of heavy metals (Cu, Pb and Zn) from the coal fly ash samples was studied. The investigations executed using three leachability tests (USEPA, TCLP, ASTM). The effect of different parameters was determined (the diameter of ash grains, the kind of leaching solutions, pH of leaching solutions, the volume ratio of leaching solutions to the mass of ash samples, and the leaching time) on the leachability of the heavy metals from fly ash samples. Moreover, the influence of pH and changes in the redox potential of the leaching solutions as well as the presence of organic compounds that could potentially form complexes with metals and solubility changes of metals. The concentration of the metals studied (Cu, Pb and Zn) in all obtained solutions was determined by FAAS method. On the basis of the research investigations, optimal leachability conditions for Cu, Pb and Zn from fly ash in this study have been determined. We have also found that pH of the leaching solution, and the presence of organic compounds which have a potential capacity of complexion the metals are the important factors in determining the solubility of Cu, Pb and Zn.
Słowa kluczowe
Rocznik
Strony
67--80
Opis fizyczny
Bibliogr. 47 poz., tab., rys.
Twórcy
  • Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland
  • Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland
Bibliografia
  • 1. Witkowska-Kit B., Zasucha J. 2000. Metody badań szkodliwego oddziaływania odpadów na środowisko, Utylizacja Odpadów Przemysłowych i Komunalnych, 2, 5–7 [In Polish].
  • 2. Rozporządzenie Rady Ministrów z dnia 30.12.1997 r. w sprawie opłat za składowanie odpadów. Dz. U. RP, Nr162, poz. 1135 [In Polish].
  • 3. Polska Norma PN-Z-15009/1997. Odpady stałe – Przygotowanie wyciągu wodnego [In Polish].
  • 4. Zandi M., Russel N.V. 2007. Design of a leaching test framework for coal fly ash accounting for environmental conditions. Environ. Monit. Assess., 131, 509–526.
  • 5. Fällman A.M. Aurell B. 1996. Leaching tests for environmental assessment of inorganic substances in wastes, Sweden. Sc. Total Environ., 178, 71–84.
  • 6. Fällman A.M. 1997. Performance and design of the availability test for measurement of potentially leachable amounts from waste materials. Environ. Sc. Tech., 31, 735–744.
  • 7. Egemen E., Yurteri C. 1996. Regulatory leaching tests for fly ash: a case study. Waste Management & Research, 14, 43–50.
  • 8. Wahlström M. 1996. Nordic recommendation for leaching tests for granular waste materials. Sc. Total Environ., 178, 95–102
  • 9. Lewin K. 1996. Leaching tests for waste compliance and characterisation: recent practical experiences. Sc. Total Environ., 178, 85–94
  • 10. Quevauviller Ph., van der Sloot H.A., Ure A., Muntau H., Gomez A., Rauret G. 1996. Conclusions of the workshop: harmonization of leaching/ extraction tests for environmental risk assessment. Sc. Total Environ., 178, 133–139.
  • 11. Galas K., Uliasz – Bocheńczyk A. 2005. Źródła i użytkowania popiołów lotnych ze spalania węgla w Polsce. Gospodarka Surowcami Mineralnymi, 21(1), 23–40 [In Polish].
  • 12. Bilitewski B., Hardtle G., Merk K. 2003. Podręcznik gospodarki odpadami, Teoria i praktyka. Wydawnictwo Seidel-Przywecki Sp. z o.o, Warszawa, p. 45 [In Polish].
  • 13. Pachowski J.2002 Rozwój technologii powstawania ubocznych produktów elektrownianych oraz ich charakterystyka i możliwości zastosowań w technologiach budownictwa drogowego. Drogi i Mosty, 1, 59–99 [In Polish].
  • 14. Esakku S., Karthikeyan O.P., Nagendran R. 2008. Heavy metal fractionation and leachability studies on fresh and partially decomposed municipal solid waste. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12, 127–132.
  • 15. Sophia A.C., Swaminathan, K. 2005. Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste. Chemosphere, 58, 75–82.
  • 16. Janusa M.A., Bourgeois J.C., Heard G.E., Kliebert N.M., Landry A.A. 1998.Effectts of Particle and Contact Time one the Reliability of Toxicity Characteristic Leaching Procedure for Solidified/Stabilized Waste, Microchem. J., 59, 326–332.
  • 17. Gitari W.M., Fatoba O.O., Petrik L.F., Vadapalli V.R.K. 2009. Leaching characteristics of selected South African fly ashes: Effect of pH on the release of major and trace species. J. Environ. Sc. and Health Part A, 44, 206–220.
  • 18. Lu S.G., Chen Y.Y., Shan H.D., Bai S.Q. 2009. Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes. J. Hazardous Materials, 169, 246–255.
  • 19. Jing C., Liu S., Korfiatis G.P., Meng X. 2006. Leaching behavior of Cr(III) in stabilized/solidified soil. Chemosphere, 64, 379–385.
  • 20. Dermata S.D., Moon D.H., Menounov N., Meng X., Hires R. 2004. An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test. J. Hazardous Materials, 116, 25–38.
  • 21. Mangialardi T. 2003. Disposal of MSWI fly ash through a combined washing-immobilization process. J. Hazardous Materials, 98, 225–240.
  • 22. Sarode D.B., Jadhaw R.N., Khatik V.A., Ingle S.T., Attarde S.B. 2010. Extraction and leaching of heavy metals from thermal power plant fly ash and its admixtures. Polish J. Environ. Stud., 6, 1325–1330.
  • 23. Fytianos K., Tsaniklidi B. 1998. Leachability of heavy metals in greek fly ash from coal combustion. Environ. Int., 4, 477–486.
  • 24. Hardaway C., Gauthreaux K., Sneddon J., Beck J. 1999. Evaluation of contaminated sed-iments by toxicity characteristic leaching procedure extraction techniques. Microchem. J., 63, 398–404.
  • 25. Praharaj T., Powell M.A., Hart, B.R., Tripathy S. 2002. Leachability of elements from sub – bituminous coal fly ash from India. Environ. Int., 27, 609–615.
  • 26. Sitarz-Palczak E., Kalembkiewicz J., 2012. Study of remediation of soil contamined with heavy metals by coal fly ash, J. Environ.Prot., 3, 1373–1383.
  • 27. Sitarz-Palczak E., Kalembkiewicz J., Zapała l., 2008. A study of the chemical forms or species of manganese found in coal fly ash and soil, Microchem. J., 90, 37–43.
  • 28. The Perkin – Elmer Corporation, Analytical Methods For Atomic Absorption Spectrophotometry, Norwalk Connecticut, USA, 1982.
  • 29. Polska Norma Branżowa BN-81/0623-01. Popioły lotne i żużle z kotłów opalanych węglem kamiennym i brunatnym. Pobieranie i przygotowanie próbek [In Polish].
  • 30. Polska Norma PN-77/G-04528-00.Paliwa stałe. Oznaczanie składu chemicznego popiołu. Przygotowanie próbki popiołu i roztworów do badań [In Polish].
  • 31. Polska Norma PN-ISO-10390. Jakość gleby. Oznaczanie pH [In Polish].
  • 32. Polska Norma PN-95/Z-15005. Oznaczanie zawartości węgla organicznego w kompoście z odpadów miejskich [In Polish].
  • 33. Polska Norma PN-R-04032. Gleba i utwory mineralne – Pobieranie próbek i oznaczanie składu granulometrycznego [In Polish].
  • 34. Łączny J.M. 2002. Model matematyczny oddziaływania składowisk odpadów energetycznych na środowisko. Zakład Narodowy im. Ossolińskich, Wrocław, p. 16 [In Polish].
  • 35. Su D.C., Wong J.W.C. 2003. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environ. Int., 29, 895–900.
  • 36. Antonkiewicz J. 2014. Effect of fly ashes and sewage sludge on Fe, Mn, Al, Si and Co uptake by grass mixture. J. Ecol. Eng., 3, 6–13.
  • 37. Izquierdo M., Quero X. 2012. Leaching behavior of elements from coal combustion ash; an overvirw. Int. J. Coal Geology, 94, 54–66.
  • 38. Choi S.K., Lee S., Song Y.K., Moon H.S. 2002. Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound. Fuel, 81, 1083–1090.
  • 39. Reardon E.J., Czank C.A., Warren C.J., Dayal R., Johnston H.M. 1995. Determining controls on element concentrations in fly ash leachate. Waste Manag. Res., 13, 435–450.
  • 40. Steenari B.M., Schelauder S., Lindqvist O. 1999. Chemical and leaching characteristics of ash from combustion of coal, peat and woo in a 12MW CFB – a comparative study. Fuel, 78, 249–258.
  • 41. Cho H., Oh D., Kim K. 2005. A study on removal characteristics of heavy metals from aqueous solutions by fly ash. J Hazardous Materials, 127, 187–195.
  • 42. Lee M.K., Saunders J.A. 2003. Effect of pH on metals precipitation and sorption: Field bioremediation and geochemical modeling approaches. Vadose Zone J., 2, 1770–185.
  • 43. Ho Y.S., Huang C.T., Huang H.W. 2002. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 37, 1421–1430.
  • 44. Cuppett J.D., Duncan S.E., Dietrich A.M. 2006. Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response. Chemical Senses, 31, 689–697.
  • 45. Zirino A., Yamamoto S. 1972. A pH-dependent model for the chemical speciation of copper, zinc, cadmium and lead in seawater. Limnology and Oceanography, 17, 661–671.
  • 46. Cárdenas-López C., Camargo G., Giraldo L., Moreno-Piraján J.C. 2007. Design of an adsorbent employing activated carbon fiber to remove lead. Ecletica Quimica, 32, 61–72.
  • 47. Deliyanni E.A., Peleka E.N., Matis K.A., 2007. Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. J. Hazardous Materials, 141, 176–184.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a85f3c9-3837-44ed-9d6d-920647f993fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.