PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of B4C Reinforcement on the Dry Sliding Wear Behaviour of Ti-6Al-4V/B4C Sintered Composites Using Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present investigation has been made to assess the influence of B4C reinforced with Ti-6Al-4V matrix prepared by powder metallurgy route. High energy ball milling was used to prepare the composites. Cylindrical preforms were prepared using suitable die set assembly. The green preforms were sintered in the muffle furnace at 900°C for 1h. Further the preforms were cooled inside the furnace till the room temperature has attained. SEM with EDS mapping analysis was used to evaluate the morphology and elemental confirmation of the prepared composite. The density and hardness of the samples are determined using Archimedes principle and Rockwell hardness testing machine. The wear resistance of the samples was determined by employing a pin on disc apparatus. The hardness of the composites (Ti-6Al-4V /10B4C) was increased while comparing to the base material (Ti-6Al-4V) which is attributed to the presence of hard ceramic phase. Response Surface Methodology (RSM) five level central composite design approach was accustomed and it minimised the amount of experimental conditions and developed mathematical models among the key process parameters namely wt. % of B4C, applied load and sliding distances to forecast the abrasive response of Specific Wear Rate (SWR) and Coefficient of Friction (CoF). Analysis of variance was used to check the validity of the developed model. The optimum parameters of specific wear rate and coefficient of friction were identified.
Twórcy
autor
  • Department of Mechanical Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu, India
  • Department of Mechanical Engineering, Kamaraj College of Engineering and Technology, Virudhunagar, Tamilnadu, India
  • Department of Automobile Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu, India
  • Department of Mechanical Engineering, Rajalakshmi Institute of Technology, Chennai Tamilnadu, India
Bibliografia
  • [1] H. Abkowitz, M. S. Abkowitz, D. David, Effect of tungsten additions on the mechanical properties of Ti-6Al-4V, Materials Science Engineering A 396, 99-106 (2005)
  • [2] M. Kobayashi, K. Funami, S. Suzuki, C. Ouchi, Manufacturing process and mechanical properties of fine TiB dispersed Ti-6Al--4V alloy composites obtained by reactive sintering, Materials Science and Engineering A 243, 279-284 (1998).
  • [3] R.-H. Hu, J.-K. Lim, Hardness and wear resistance improvement of surface composite layer on Ti-6Al-4V substrate fabricated by powder sintering, Materials and Design 31, 2670-2675 (2010).
  • [4] A. Mahboubi, S. Soufiani, M. H. Enayati, F. Karimzadeh, Mechanical alloying behaviour of Ti-6Al-4V residual scraps with addition of Al2O3 to produce nanostructured powder, Materials and Design 2010, 31, 3954-3959 (2010).
  • [5] M. Dewidar, Microstructure and mechanical properties of biocompatible high density Ti-6Al-4V/W produced by high frequency induction heating sintering. Materials and Design 31, 3964-3970 (2010).
  • [6] E. M. Sharifi, F. Karimzadeh, M. H. Enayati, Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminium matrix nanocomposites, Materials and Design 32, 3263-3271 (2011).
  • [7] Z.-Q. Yan, F. Chen, T.-X. Cai, J. Yin, Influence of particle size on property of Ti-6Al-4V alloy prepared by high-velocity compaction, Transactions of Nonferrous Metals 23, 361-365 (2010).
  • [8] C. Y. Tang, C. T. Wong, L. N. Zhang, In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti-6Al-4V/MWCT powder, Journal of alloys and compounds 557, 67-72 (2013).
  • [9] I. Montealgere Melendez, E. Neubauer, P. Angerer, Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites, Composites Science and Technology 71, 1154-1162 (2011).
  • [10] C. Poletti, M. Balog, T. Schubert, Production of titanium matrix composites reinforced with SiC particles, Composites Science and Technology 68, 2171-2177 (2008).
  • [11] H. Rastegri, S. M. Abbasi, Producing Ti-6Al-4V/TiC composite with superior properties by adding boron and thermo-mechanical processing, Materials Science & Engineering A 564, 473-477 (2013).
  • [12] Y. L. Xi, D. L Chai, W. X. Zhang, J. E. Zhou, Ti-6Al-4V particle reinforced magnesium composite by powder metallurgy, Materials letters 59, 1831-1835 (2005).
  • [13] M. Anandajothi, S. Ramanathan, V. Ananthi, P. Narayanasamy, Fabrication and characterization of Ti6Al4V/TiB2-TiC composites by powder metallurgy method, Rare Metals 36 (10), (2017).
  • [14] T. M. T. Godfrey, A. Wisbey, P. S. Goowin, C. M. Bagnall, C. M. Ward-Close, Microstructure and tensile properties of mechanically alloyed Ti-6Al-4V with boron addition, Materials Science Engineering 282, 240-250 (2000).
  • [15] S. J. Zhu, D. Mukherji, W. Chen, Z. G. Wang, R. P. Wahi, Steady state creep behaviour of TiC particulate reinforced Ti-6Al-4V composite, Materials Science Engineering A 256, 301-307 (1998).
  • [16] N. Atiqah, M. Aziz, R. Yunus, U. Rashid, A. M. Syam, Application of response surface methodology (RSM) for optimizing the palm-based pentaerythritol ester synthesis, Industrial Crops and Products 62, 305-312 (2014).
  • [17] S. C. Vettivel, N. Selvakumar, R. Narayanasamy, N. Leema, Numerical modelling, prediction of Cu–W nano powder composite in dry sliding wear condition using response surface methodology, Materials & Design 50, 977-996 (2013).
  • [18] Z.-R. Yang, Y. Sun, X.-X. Li, S.-Q. Wang, Dry sliding wear performance of 7075 Al alloy under different temperatures and load conditions, Journal of Rare Metals, (2015).
  • [19] N. Selvakumar, T. Ramkumar, Effect of high temperature wear behaviour of sintered Ti-6Al-4V reinforced with nano B4C particles, Transactions of the Indian Institute of Metals 69 (6), 1267-1276 (2016).
  • [20] P. Narayanasamy, N. Selvakumar, Effect of hybridizing and optimization of TiC on the tribological behavior of Mg-MoS2 composites, ASME Journal of Tribology 139 (5), (2017); 051301-311.
  • [21] N. Selvakumar, P. Narayanasamy, Optimization and effect of weight fraction of MoS2 on the tribological behaviour of Mg-TiC-MoS2 hybrid composites, Tribology Transactions Taylor & Francis Publications 59 (4), 733-747 (2016).
  • [22] N. Selvakumar, P. Radha, R. Narayanasamy, M. J. Davidson, Prediction of deformation characteristics of sintered aluminium preforms using neural networks, Modelling and Simulation in Materials Science and Engineering 12 (4), 611-620 (2004).
  • [23] N. Selvakumar, T. Ramkumar, Effect of Particle Size of B4C Reinforcement on Ti-6Al-4V Sintered Composite Prepared by Mechanical Milling Method, Transactions of Indian Ceramic Society 76 (1), 31-37 (2017).
  • [24] P. Ravindran, K. Manisekar, R. Narayanasamy, P. Narayanasamy, Tribological behaviour of powder metallurgy - processed 1200 aluminium hybrid composites with the addition of graphite solid lubricant, Ceramic International 39, 1169-1182 (2013).
  • [25] N. Selvakumar, S. C. Vettivel, Thermal, electrical and wear behaviour of sintered Cu-W nanocomposite, Materials and Design 46, 16-25 (2013).
  • [26] Zhang Zhi-Xiao, D. U Xian-Wu, Wang Wei-Min, Fu Zheng-Yi, WangHao, Preparation and Sintering of High Active and Ultrafine B4C-SiC Composite Powders, Journal of Inorganic Material 29, 185-190 (2014).
  • [27] Y. Li, F. Zhang, T.-T. Zhao, M. Tang, Y. Liu, Enhanced wear resistance of NiTi alloy by surface modification with Nb ion implantation, Journal of Rare Metals 33 (3), 244-248 (2014).
  • [28] P. Narayanasamy, N. Selvakumar, P. Balasundar, Effect of hybridizing MoS2 on the Tribological behaviour of Mg-TiC Composites, Transactions of the Indian Institute of Metals 68 (5), 911-925 (2015).
  • [29] A. K. Parida, B. C. Routara, R. K. Bhuyan, Surface roughness model and parametric optimization in machining of GFRP composite: Taguchi and Response surface methodology approach, Materials Today Proceedings 2, 3065-3074 (2015).
  • [30] P. Ravindran, K. Manisekar, P. Narayanasamy, N. Selvakumar, R. Narayanasamy, Application of factorial techniques to study the wear behaviour of Al hybrid composites with Graphite Addition Elsevier publications, Materials and Design 39 (7), 42-54 (2012).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a841485-f07c-4e96-8b71-eeb5f7570fb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.