PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Applications of light emitting diodes as sensors of their own emitted light

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In literature, it is known that a Light Emitting Diode (LED) could be used as a light sensor. It is also known that its emitted light spectrum and sensitivity spectrum can be partially overlapped. This work presents how commercial LEDs can be used as light emitters and simultaneously as sensors of the reflected portion of the light emitted by themselves. The realized devices present a unique characteristic: the transmitter and the receiver coincide spatially as they are the same device. This ensures the perfect overlapping between transmission and reception radiation lobes that could provide many benefits in several applications like as distance measurements or image sensors. Some simple electronic configurations that use LEDs as detectors of their own emitted light are presented. It has been also demonstrated how these LEDsTx-Rx can work as image sensors by acquiring an image of a simple test object, and how they can realize distance sensors with respect to other known techniques. Further advantages can be obtained by realizing LEDTx-Rx array in single integrated devices. With the realization of such devices, it will be also possible to experiment new constructive solutions for commonly used applications, without the need of using separate emitter and receiver.
Twórcy
autor
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta 3, 50139 Florence, Italy
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta 3, 50139 Florence, Italy
autor
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta 3, 50139 Florence, Italy
autor
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta 3, 50139 Florence, Italy
Bibliografia
  • [1] E.F. Schubert, Light-Emitting Diodes, 3rd edition, E. Fred Schubert, 2018.
  • [2] T. Ozeki, T. Uematsu, T. Ito, M. Yamamoto, Y. Unno, Half-duplex optical transmission link using an LED source–detector scheme, Opt. Lett. 2 (1978) 103, http://dx.doi.org/10.1364/OL.2.000103.
  • [3] D.A. Lock, S.R.G. Hall, A.D. Prins, B.G. Crutchley, S. Kynaston, S.J. Sweeney, LED junction temperature measurement using generated photocurrent, J. Disp. Technol. 9 (2013) 396–401, http://dx.doi.org/10.1109/JDT.2013.2251607.
  • [4] B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, Z. Chen, Junction-temperature determination in InGaN light-emitting diodes using reverse current method, IEEE Trans. Electron Devices 60 (2013) 241–245, http://dx.doi.org/10.1109/TED.2012.2228656.
  • [5] Journal of the Korean Physical Society, (n.d.). https://www.springer.com/physics/journal/40042. (Accessed 29 November 2018).
  • [6] K.P. O’Donnell, R.W. Martin, P.G. Middleton, Origin of luminescence from InGaN diodes, Phys. Rev. Lett. 82 (1999) 237–240, http://dx.doi.org/10.1103/PhysRevLett.82.237.
  • [7] F. Yang, M. Wilkinson, E.J. Austin, K.P. O’Donnell, Origin of the Stokes shift: a geometrical model of exciton spectra in 2D semiconductors, Phys. Rev. Lett. 70 (1993) 323–326, http://dx.doi.org/10.1103/PhysRevLett.70.323.
  • [8] R.W. Martin, P.G. Middleton, K.P. O’Donnell, W. Van der Stricht, Exciton localization and the Stokes’ shift in InGaN epilayers, Appl. Phys. Lett. 74 (1999) 263–265, http://dx.doi.org/10.1063/1.123275.
  • [9] E. Miyazaki, S. Itami, T. Araki, Using a light-emitting diode as a high-speed, wavelength selective photodetector, Rev. Sci. Instrum. 69 (1998) 3751–3754, http://dx.doi.org/10.1063/1.1149174.
  • [10] F.M. Mims, Sun photometer with light-emitting diodes as spectrally selective detectors, Appl. Opt. 31 (1992) 6965–6967, http://dx.doi.org/10.1364/AO.31.006965.
  • [11] Y.B. Acharya, A. Jayaraman, S. Ramachandran, B.H. Subbaraya, Compact light-emitting-diode sun photometer for atmospheric optical depth measurements, Appl. Opt. 34 (1995) 1209–1214.
  • [12] D.R. Brooks, F.M. Mims, Development of an inexpensive handheld LED-based Sun photometer for the GLOBE program, J. Geophys. Res. Atmos. 106 (2001) 4733–4740, http://dx.doi.org/10.1029/2000JD900545.
  • [13] F.M. Mims, An inexpensive and stable LED Sun photometer for measuring the water vapor column over South Texas from 1990 to 2001, Geophys. Res. Lett. 29 (2002) 20–21, http://dx.doi.org/10.1029/2002GL014776.
  • [14] Y.B. Acharya, Spectral and emission characteristics of LED and its application to LED-based sun-photometry, Opt. Laser Technol. 37 (2005) 547–550, http://dx.doi.org/10.1016/j.optlastec.2004.08.008.
  • [15] K. Okamoto, Intelligent non-conventional applications of LEDs, Trans. Jpn. Inst. Electron. Packag. 3 (2010) 116–123, http://dx.doi.org/10.5104/jiepeng.3.116.
  • [16] J. Rossiter, T. Mukai, A novel tactile sensor using a matrix of LEDs operating in both photoemitter and photodetector modes, IEEE Sens. 2005 (2005) 4, http://dx.doi.org/10.1109/ICSENS.2005.1597869.
  • [17] D.-Y. Shin, J.Y. Kim, I.-Y. Eom, Spectral responses of light-emitting diodes as a photodiode and their applications in optical measurements, Bull. Korean Chem. Soc. 37 (2016) 2041–2046, http://dx.doi.org/10.1002/bkcs.11030.
  • [18] C. Weber, J.O. Tocho, E.J. Rodríguez, H.A. Acciaresi, Leds used as spectral selective light detectors in remote sensing techniques, J. Phys. Conf. Ser. 274 (2011), 012103, http://dx.doi.org/10.1088/1742-6596/274/1/012103.
  • [19] V. Lange, F. Lima, D. Kühlke, Multicolour LED in luminescence sensing application, Sens. Actuators Phys. 169 (2011) 43–48, http://dx.doi.org/10. 1016/j.sna.2011.05.002.
  • [20] S. Li, A. Pandharipande, F.M.J. Willems, Daylight sensing LED lighting system, IEEE Sens. J. 16 (2016) 3216–3223, http://dx.doi.org/10.1109/JSEN.2016.2520495.
  • [21] S. Li, A. Pandharipande, LED-based color sensing and control, IEEE Sens. J. 15 (2015) 6116–6124, http://dx.doi.org/10.1109/JSEN.2015.2453408.
  • [22] S. Li, A. Pandharipande, Color sensing and illumination with LED lamps, 2014 IEEE Fourth Int. Conf. Consum. Electron. Berl. ICCE-Berl. (2014) 1–2, http://dx.doi.org/10.1109/ICCE-Berlin.2014.7034294.
  • [23] P.K. Dasgupta, I.-Y. Eom, K.J. Morris, J. Li, Light emitting diode-based detectors, Anal. Chim. Acta 500 (2003) 337–364, http://dx.doi.org/10.1016/S0003-2670(03)00575-0.
  • [24] Y.D. Jhou, C.H. Chen, R.W. Chuang, S.J. Chang, Y.K. Su, P.C. Chang, P.C. Chen, H. Hung, S.M. Wang, C.L. Yu, Nitride-based light emitting diode and photodetector dual function devices with InGaN/GaN multiple quantum well structures, Solid-State Electron. 49 (2005) 1347–1351, http://dx.doi.org/10.1016/j.sse.2005.06.002.
  • [25] R. Stojanovic, D. Karadaglic, Design of an oximeter based on LED-LED configuration and FPGA technology, Sensors. 13 (2013) 574–586, http://dx.doi.org/10.3390/s130100574.
  • [26] M. O’Toole, D. Diamond, Absorbance based light emitting diode optical sensors and sensing devices, Sensors. 8 (2008) 2453–2479, http://dx.doi.org/10.3390/s8042453.
  • [27] R. Stojanovic, D. Karadaglic, A LED–LED-based photoplethysmography sensor, Physiol. Meas. 28 (2007) N19–N27, http://dx.doi.org/10.1088/0967-3334/28/6/N01.
  • [28] E. Vannacci, S. Granchi, M. Cecchi, M. Calzolai, E. Mazzi, E. Biagi, Study of the Light Emitting Diode as a photoreceptor: spectral and electrical characterization as function of temperature and lighting source, Opto-Electron. Rev. 26 (2018) 201–2019, http://dx.doi.org/10.1016/j.opelre. 2018.06.001
  • [29] D. Wurmfeld, T. LOCKE, A System, Method, and Apparatus for a Dynamic Transaction Card, WO2016168442A1, 2016 (Accessed 29 November 2018) https://patents.google.com/patent/WO2016168442A1/en.
  • [30] P.H. Dietz, W.S. Yerazunis, J.N. Midgal, LED With Controlled Capacitive Discharge for Photo Sensing, US6870148B2, 2005 (Accessed 29 November 2018) https://patents.google.com/patent/US6870148/en.
  • [31] M. Johnson, N.M. Jokerst, Self-detecting light-emitting diode optical sensor, J. Appl. Phys. 56 (1984) 869–871, http://dx.doi.org/10.1063/1.334026.
  • [32] M. Johnson, Single fiber shutter type sensor using a self detecting LED, in: Fiber Opt. Sens. III, International Society for Optics and Photonics, 1989, 90–95, http://dx.doi.org/10.1117/12.949299.
  • [33] M. Johnson, Photodetection and Measurement: Maximizing Performance in Optical Systems, McGraw Hill Education, New York, NY, USA, 2003 (Accessed 19 December 2018) https://books.google.com/books/about/Photodetection and Measurement.html?hl=it&id=K5IKWDwUYZAC.
  • [34] Z. Dong, C.K. Tse, S.Y.R. Hui, Basic circuit theoretic considerations of LED driving: voltage-source versus current-source driving, 2016 IEEE 2nd Annu. South. Power Electron. Conf. SPEC (2016) 1–6, http://dx.doi.org/10.1109/SPEC.2016.7846015
  • [35] Z. Dong, C.K. Tse, R. Hui, Circuit theoretic considerations of LED driving:voltage-Source versus current-source driving, IEEE Trans. Power Electron. (2018) 1.
  • [36] H. van der Broeck, G. Sauerlander, M. Wendt, Power driver topologies and control schemes for LEDs, APEC 07 - Twenty-Second Annu. IEEE Appl. Power Electron. Conf. Expo. (2007) 1319–1325, http://dx.doi.org/10.1109/APEX.2007.357686.
  • [37] S. Khubchandani, M.R. Hodkiewicz, A. Keating, Characterizing the performance of LED reflective distance sensors, IEEE Access 5 (2017) 14289–14297, http://dx.doi.org/10.1109/ACCESS.2017.2731801.
  • [38] U. Fischer-Hirchert, Photonic Packaging Sourcebook: Fiber-Chip Coupling for Optical Components, Basic Calculations, Modules, Springer-Verlag, Berlin Heidelberg, 2015 (Accessed 29 November 2018) www.springer.com/de/book/9783642253751.
  • [39] F. Nagata, T. Yamashiro, N. Kitahara, A. Otsuka, K. Watanabe, M.K. Habib, Self control and server-supervisory control for multiple mobile robots and its applicability to intelligent DNC system, Robot. Concepts Methodol. Tools Appl. (2013) 375–390, http://dx.doi.org/10.4018/978-1-4666-4607-0.ch019.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a7f6625-7f66-48ff-945c-a4a6c8cd96f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.