PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microphytobenthic primary production on exposed coastal sandy sediments of the Southern Baltic Sea using ex situ sediment cores and oxygen optodes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The shallow coastal water zone of the tide-less southern Baltic Sea is dominated by exposed sandy sediments which are typically inhabited by microphytobenthic communities, but their primary production is poorly studied, and hence four stations between 3.0 and 6.2 m depth were investigated. Sediment cores were carefully taken to keep the natural layering and exposed in a controlled self-constructed incubator. Respiratory oxygen consumption and photosynthetic oxygen production were recorded applying planar oxygen optode sensors. We hypothesized that with increasing water depths the effects of wind- and wave-induced erosion and mixing of the upper sediment layer are dampened and expected higher microphytobenthic biomass and primary production in the incubated cores. Our data partly confirm this hypothesis, as cores sampled at the most exposed stations contained only 50% chlorophyll a m−2 compared to the deeper stations. However, primary production was highly variable, probably due to fluctuating sediment-disturbing conditions before the cores were taken. Due to these physical forces sand grains were highly mobile and rounded, and small epipsamic benthic diatoms dominated, which preferentially occurred in some cracks and crevices as visualized by scanning electron microscopy. The data fill an important gap in reliable production data for sandy sediments of the southern Baltic Sea, and point to the ecological importance and relevant contribution of microphytobenthic communities to the total primary production of this marine ecosystem. Oxygen planar optode sensor spots proved to be a reliable, sensitive and fast detection system for ex situ oxygen exchange measurements in the overlying water of intact sediment cores.
Słowa kluczowe
Czasopismo
Rocznik
Strony
247--260
Opis fizyczny
Bibliogr. 83 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Germany
  • Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Germany
autor
  • Institute of Biology and Chemistry, Marine Botany, University of Bremen, Germany
autor
  • Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Germany
autor
  • Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Germany
Bibliografia
  • [1] Ask, J., Rowe, O., Brugel, S., Strömgren, M., Byström, P., Andersson, A., 2016. Importance of coastal primary production in the northern Baltic Sea. Ambio 45, 635-648. https://doi.org/10.1007/s13280-016-0778-5.
  • [2] Aslam, S. N., Cresswell-Maynard, T., Thomas, D. N., Underwood, G. J. C., 2012. Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. J. Phycol. 48, 1494-1509. https://doi.org/10.1111/jpy.12004.
  • [3] BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer Int. Publ., Berlin. https://doi.org/10.1007/978-3-319-16006-1.
  • [4] Barranguet, C., Kromkamp, J., Peene, J., 1998. Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 173, 117-126. https://doi.10.3354/meps173117.
  • [5] Billerbeck, M., Roy, H., Bosselmann, K., Huettel, M., 2007. Benthic photosynthesis in submerged Wadden Sea intertidal flats. Estuar. Coast. Shelf Sci. 71, 704-716. https://doi.org/10.1016/j.ecss.2006.09.019.
  • [6] Blasutto, O., Cibic, T., De Vittor, C., Umani, S. F., 2005. Microphytobenthic primary production and sedimentary carbohydrates along salinity gradients in the lagoons of Grado and Marano (Northern Adriatic Sea). Hydrobiol. 550, 47-55. https://doi.org/10.1007/s10750-005-4361-5.
  • [7] Cahoon, L. B., 1999. The role of benthic microalgae in neritic ecosystems. Oceanogr. Mar. Biol. 37, 47-86.
  • [8] Cahoon, L. B., Cooke, J. E., 1992. Benthic microalgal production in Onslow Bay, North-Carolina, USA. Mar. Ecol. Prog. Ser. 84, 185-196. www.jstor.org/stable/24829553.
  • [9] Cartaxana, P., Ruivo, M., Hubas, C., Davidson, I., Serôdio, J., Jesus, B., 2011. Physiological versus behavioral photoprotection in intertidal epipelic and epipsammic benthic diatom communities. J. Exp. Mar. Biol. Ecol. 405, 120-127. https://doi.org/10.1016/j.jembe.2011.05.027.
  • [10] Cibic, T., Blasutto, O., Falconi, C., Fondaumani, S., 2007. Microphytobenthic biomass, species composition and nutrient availability in sublittoral sediments of the Gulf of Trieste (northern Adriatic Sea). Estuar. Coast. Shelf Sci. 75, 50-62. https://doi.org/10.1016/j.ecss.2007.01.020.
  • [11] Colijn, F., Dijkema, K. S., 1981. Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Mar. Ecol. Prog. Ser. 4, 9-21. https://doi.org/10.3354/meps004009.
  • [12] Colijn, F., De Jonge, V. N., 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary. Mar. Ecol. Prog. Ser. 14, 185-196. https://doi.org/10.3354/meps014185.
  • [13] Cook, P. L. M., Veuger, B., Böer, S., Middelburg, J. J., 2007. Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment. Aquat. Microb. Ecol. 49, 165-180. https://doi.org/10.3354/ame01142.
  • [14] Daggers, T. D., Kromkamp, J. C., Herman, P. M. J., van der Wal, D., 2018. A model to assess microphytobenthic primary production in tidal systems using satellite remote sensing. Remote Sens. Environ. 211, 129-145. https://doi.org/10.1016/j.rse.2018.03.037.
  • [15] De Brouwer, J. F. C., Wolfstein, K., Ruddy, G. K., Jones, T. E. R., Stal, L. J., 2005. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb. Ecol. 49, 501-512. https://doi.org/10.1007/s00248-004-0020-z.
  • [16] De Jonge, V. N., van Beusekom, J., 1995. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems Estuary. Limnol. Oceanogr. 40, 766-778. https://doi.org/10.4319/lo.1995.40.4.0776.
  • [17] Ezequiel, J., Laviale, M., Frankenbach, S., Cartaxana, P., Serôdio, J., 2015. Photoacclimation state determines the photobehaviour of motile microalgae: the case of a benthic diatom. J. Exp. Mar. Biol. Ecol. 468, 11-20. https://doi.org/10.1016/j.jembe.2015.03.004.
  • [18] Falkowski, P. G., Owens, T. G., 1980. Light-shade adaptation. Two strategies in marine phytoplankton. Plant Physiol. 66, 592-595. https://doi.org/10.1104/pp.66.4.592.
  • [19] Folk, R. L., Ward, C. W., 1957. Brazos River bar (Texas); a study in the significance of grain size parameters. J. Sedim. Res. 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.
  • [20] Frankenbach, S., Ezequiel, J., Plecha, S., Goessling, J. W., Vaz, L., Kühl, M., Dias, J. M., Vaz, N, Serôdio, J., 2020. Synoptic spatiotemporal variability of the photosynthetic productivity of microphytobenthos and phytoplankton in a tidal rstuary. Front. Mar. Sci. 7, 170. https://doi.org/10.3389/fmars.2020.00170.
  • [21] Garcia-Robledo, E., Bohorquez, J., Corzo, A., Jimenez-Arias, J. L., Papaspyrou, S., 2016. Dynamics of inorganic nutrients in intertidal sediments: porewater, exchangeable, and intracellular pools. Front. Microbiol. 7, 761. https://doi.org/10.3389/fmicb.2016.00761.
  • [22] Gerbersdorf, S. U., Meyercordt, J., Meyer-Reil, L. A., 2005. Microphytobenthic primary production in the Bodden estuaries, southern Baltic Sea, at two study sites differing in trophic status. Aquat. Microb. Ecol. 41, 181-198. https://doi.org/10.3354/ame041181.
  • [23] Glud, R. N., Kühl, M., Wenzhöfer, F., Rysgaard, S., 2002. Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): Importance for ecosystem primary production. Mar. Ecol. Prog. Ser. 238, 15-29. https://doi.org/10.3354/meps238015.
  • [24] Glud, R. N., Woelfel, J., Karsten, U., Kühl, M., Rysgaard, S., 2009. Benthic microalgal production in the Arctic: Applied methods and status of the current database. Bot. Mar. 52, 559-571. https://doi.org/10.1515/BOT.2009.074.
  • [25] Håkanson, L., 2008. Factors and criteria to quantify coastal area sensitivity/vulnerability to eutrophication: presentation of a sensitivity index based on morphometrical parameters. Internat. Rev. Hydrobiol. 93, 372-388. https://doi.org/10.1002/iroh.200711033.
  • [26] Hanlon, A. R. M., Bellinger, B. J., Haynes, K., Xiao, G., Hofmann, T. A., Gretz, M. R., Ball, A. S., 2006. Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersion-immersion period. Limnol. Oceanogr. 51, 179-193. https://doi.org/10.4319/lo.2006.51.1.0079.
  • [27] Hardison, A. K., Canuel, E. A., Anderson, I. C., Tobias, C. R., Veuger, B., Waters, M. N., 2013. Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments. Biogeosciences 10, 5571-5588. https://doi.org/10.5194/bg-10-5571-2013.
  • [28] Hargrave, B. T., Prouse, N. J., Phillips, G. A., Neame, P. A., 1983. Primary production and respiration in the pelagic and benthic communities at two intertidal sites in the upper Bay of Fundy. Can. J. Fish. Aquat. Sci. 40, 229-243. https://doi.org/10.1139/f83-286.
  • [29] Haro, S., Lara, M., Laiz, I., Gonzalez, C. J., Bohórquez, J., Garcia-Robledo, E., Corzo, A., Papaspyrou, S., 2020. Microbenthic net metabolism along intertidal gradients (Cadiz Bay, SW Spain): Spatio-temporal patterns and environmental factors. Front. Mar. Sci. 7, 39. https://doi.org/10.3389/fmars.2020.00039.
  • [30] Harper, M. A., 1969. Movement and migration of diatoms on sand grains. Br. Phycol. J. 4, 97-103. https://doi.org/10.1080/00071616900650081.
  • [31] HELCOM, 2015. Annex C-4. Phytoplankton chlorophyll a. In HELCOM Combine, 257-263, https://helcom.fi/media/publications/Manual-for-Marine-Monitoring-in-the-COMBINE-Programme-of-HELCOM.pdf.
  • [32] Jesus, B., Brotas, V., Ribeiro, L., Mendes, C. R., Cartaxana, P., Paterson, D. M., 2009. Adaptations of microphytobenthos assemblages to sediment type and tidal position. Cont. Shelf Res. 29, 1624-1634. https://doi.org/10.1016/j.csr.2009.05.006.
  • [33] Joint, I. I., 1978. Microbial production of an estuarine mudflat. Estuar. Coast. Mar. Sci. 7, 185-195. https://doi.org/10.1016/0302-3524(78)90074-9.
  • [34] Jurasinski, G., Janssen, M., Voss, M., Böttcher, M. E., Brede, M., Burchard, H., Forster, S., Gosch, L., Gräwe, U., Gründling-Pfaff, S., Haider, F., Ibenthal, M., Karow, N., Karsten, U., Kreuzburg, M., Lange, X., Leinweber, P., Massmann, G., Ptak, T., Rezanezhad, F., Rehder, G., Romoth, K., Schade, H., Schubert, H., Schulz-Vogt, H., Sokolova, I. M., Strehse, R., Unger, V., Westphal, J., Lennartz, B., 2018. Understanding the coastal ecocline: assessing sea-land-interactions at non-tidal, low-lying coasts through interdisciplinary research. Front. Mar. Sci. 5, art. no. 342. https://doi.org/10.3389/fmars.2018.00342.
  • [35] Karsten, U., Baudler, H., Himmel, B., Jaskulke, R., Ewald, H., Schumann, R., 2012. Short-term measurements of exposure and inundation of sediment areas in a tide-less wind flat system at the Southern Baltic Sea coast. J. Mar. Syst. 105-108, 187-193. http://dx.doi.org/10.1016/j.jmarsys.2012.08.004.
  • [36] Koh, C. H., Khim, J. S., Araki, H., Yamanishi, H., Koga, K., 2007. Within-day and seasonal patterns of microphytobenthos biomass determined by co-measurement of sediment and water column chlorophylls in the intertidal mudflat of Nanaura, Saga, Ariake Sea, Japan. Estuar. Coast. Shelf Sci. 72, 42-52. https://doi.org/10.1016/j.ecss.2006.10.005.
  • [37] Kreuzburg, M., Ibenthal, M., Janssen, M., Rehder, G., Voss, M., Naumann, M., Feldens, P., 2018. Sub-marine continuation of peat deposits from a coastal peatland in the Southern Baltic Sea and its holocene development. Front. Earth Sci. 6, 103. https://dx.doi.org/10.3389/feart.2018.00103.
  • [38] Kromkamp, J., Peene, J., van Rijswijk, P., Sandee, A., Goosen, N., 1995. Nutrients, light and primary production by phytoplankton and microphytobenthos in the eutrophic, turbid Westerschelde estuary (The Netherlands). Hydrobiol. 311, 9-19. https://doi.org/10.1007/BF00008567.
  • [39] Kühl, M., Glud, R. N., Ploug, H., Ramsing, N. B., 1996. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32, 799-812. https://doi.org/10.1111/j.0022-3646.1996.00799.x.
  • [40] Kühl, M., Glud, R. N., Borum, J., Roberts, R., Rysgaard, S., 2001. Photosynthetic performance of surface associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Mar. Ecol. Prog. Ser. 223, 1-14. https://doi.org/10.3354/meps223001.
  • [41] Lass, H. U., Magaard, L., 1996. Wasserstandsschwankungen und Seegang. In: Rheinheimer, G. (Ed.), Meereskunde der Ostsee. Springer Verlag, Berlin, 68-74. https://doi.org/10.1007/978-3-642-85211-4_4.
  • [42] Launeau, P., Méléder, V., Verpoorter, C., Barillé, L., Kazemipour-Ricci, F., Giraud, M., Jesus, B., Le Menn, E., 2018. Microphytobenthos biomass and diversity mapping at different spatial scales wither hyperspectral optical model. Remote Sens. 10, 716. https://doi.org/10.3390/rs10050716.
  • [43] Leach, J. H., 1970. Epibenthic algal production in an intertidal mudflat. Limnol. Oceanogr. 15, 514-521. https://doi.org/10.4319/lo.1970.15.4.0514.
  • [44] Lehmann, A., Myrberg, K., 2008. Upwelling in the Baltic Sea — a review. J. Mar. Syst. 74, 3-12. https://doi.org/10.1016/j.jmarsys.2008.02.010.
  • [45] Levene, H., Olkin, I., Hotelling, H., 1960. Robust tests for equality of variances. In: Contributions to Probability and Statistics. Essays in Honor Harold Hotelling. Stanford Univ. Press, 78-92.
  • [46] MacIntyre, H. L., Geider, R. J., Miller, D. C., 1996. Microphytobenthos: the ecological role of the secret garden of unvegetated, shallow-water marine habitats. I. distribution, abundance and primary production. Estuaries 19, 186-201. https://doi.org/10.2307/1352224.
  • [47] Meyercordt, J., Meyer-Reil, L. A., 1999. Primary production of benthic microalgae in two shallow coastal lagoons of different trophic status in the southern Baltic Sea. Mar. Ecol. Prog. Ser. 178, 179-191. https://doi.org/10.3354/meps178179.
  • [48] Middleburg, J. J., Barranguet, C., Boschker, H. T. S., Herman, P. M. J., Moens, T., Heip, C. H. R., 2000. The fate of intertidal rnicrophytobenthos carbon : An in situ 13C-labeling study. Limnol. Oceanogr. 5, 1224-1234. https://doi.org/10.4319/lo.2000.45.6.1224.
  • [49] Ni Longphuirt, S. N., Clavier, J., Grall, J., Chauvaud, L., Le Loch, F., Le Berre, I., Flye-Sainte-Marie, J., Richard, J., Leynaert, A., 2007. Primary production and spatial distribution of subtidal microphytobenthos in a temperate coastal system, the Bay of Brest, France. Estuar. Coast. Shelf Sci. 74, 367-380. https://doi.org/10.1016/j.ecss.2007.04.025.
  • [50] Oakes, J. M., Connolly, R. M., Revill, A. T., 2010. Isotope enrichment in mangrove forests separates microphytobenthos and detritus as carbon sources for animals. Limnol. Oceanogr. 55, 393-402. https://doi.org/10.4319/lo.2010.55.1.0393.
  • [51] Orvain, F., Lefebvre, S., Montepini, J., Sébire, M., Gangnery, A., Sylvand, B., 2012. Spatial and temporal interaction between sediment and microphytobenthos in a temperate estuarine macro-intertidal bay. Mar. Ecol. Prog. Ser. 458, 53-68. https://doi.org/10.3354/meps09698.
  • [52] Pinckney, J. L., 2018. A mini-review of the contribution of benthic microalgae to the ecology of the continental shelf in the south atlantic bight. Estuar. Coasts 41, 2070-2078. https://doi.org/10.1007/s12237-018-0401-z.
  • [53] Prelle, L. R., Graiff, A., Gründling-Pfaff, S., Sommer, V., Kuriyama, K., Karsten, U., 2019. Photosynthesis and respiration of Baltic Sea benthic diatoms to changing environmental conditions and growth responses of selected species as affected by an adjacent peatland (Hütelmoor). Front. Microbiol. 10, 1500. https://doi.org/10.3389/fmicb.2019.01500.
  • [54] Renk, H., Ochocki, S., 1998. Photosynthetic rate and light curves of phytoplankton in the southern Baltic. Oceanologia 40 (4), 331-344.
  • [55] Revsbech, N. P., Jorgensen, B. B., 1983. Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitations of the method. Limnol. Oceanogr. 28, 749-756. https://doi.org/10.4319/lo.1983.28.4.0749.
  • [56] Richardson, K., Beardall, J, Raven, J. A., 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93, 157-191. https://doi.org/10.1111/j.1469-8137.1983.tb03422.x.
  • [57] Risgaard-Petersen, N., Rysgaard, S., Nielsen, L. P., Revsbech, N. P., 1994. Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnol. Oceanogr. 39, 573-579. https://doi.org/10.4319/lo.1994.39.3.0573.
  • [58] Sabbe, K., 1993. Short-term fluctuations in benthic diatom numbers on an intertidal sandflat in the Westerschelde estuary (Zeeland, The Netherlands). Hydrobiol. 269/270, 275-284. https://doi.org/10.1007/BF00028026.
  • [59] Schiewer, U., 2008. Ecology of Baltic coastal waters. Ecological Studies 197. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-540-73524-3.
  • [60] Schreiber, R. A., Pennock, J. R., 1995. The relative contribution of benthic microalgae to total microalgal production in a shallow sub-tidal estuarine environment. Ophelia 42, 335-352. https://doi.org/10.1080/00785326.1995.10431512.
  • [61] Schwarzer, K., 1996. Dynamik der Küste. In: Rheinheimer, G. (Ed.), Meereskunde der Ostsee. Springer Verlag, Berlin, 25-33. https://doi.org/10.1007/978-3-642-85211-4_4.
  • [62] Serôdio, J., Paterson, D. M., Méléder, V., Vyverman, W., 2020. Editorial: advances and challenges in microphytobenthos research: from cell biology to coastal ecosystem function. Front. Mar. Sci. 7, 608729. https://doi.org/10.3389/fmars.2020.608729.
  • [63] Shapiro, S. S., Wilk, M. B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591-611. https://doi.org/10.2307/2333709.
  • [64] Steele, J. H., Baird, E. I., 1968. Production ecology of a sandy beach. Limnol. Oceanogr. 13, 14-25. https://doi.org/10.4319/lo.1968.13.1.0014.
  • [65] Sundbäck, K., Jönsson, B., 1988. Microphytobenthic productivity and biomass in sublittoral sediments of a stratified bay, Southeastern Kattegat. J. Exp. Mar. Biol. Ecol. 122, 63-81. https://doi.org/10.1016/0022-0981(88)90212-2.
  • [66] Sundbäck, K., Enoksson, V., Granéli, W., Pettersson, K., 1991. Influence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water: a laboratory continuous-flow study. Mar. Ecol. Prog. Ser. 74, 263-279. https://www.jstor.org/stable/24825830.
  • [67] Sundbäck, K., Miles, A., Göransson, E., 2000. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: An annual study. Mar. Ecol. Prog. Ser. 200, 59-76. https://doi.org/10.3354/meps200059.
  • [68] Sundbäck, K., Miles, A., 2002. Role of microphytobenthos and denitrification for nutrient turnover in embayments with floating macroalgal mats: a spring situation. Aquat. Microb. Ecol. 30, 91-101. https://doi.org/10.3354/ame030091.
  • [69] Ubertini, M., Lefebvre, S., Gangnery, A., Grangeré, K., Le Gendre, R., Orvain, F., 2012. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon. PLoS ONE 7 (8), e44155. https://doi.org/10.1371/journal.pone.0044155.
  • [70] Urban-Malinga, B., Wiktor, J., 2003. Microphytobenthic primary production along a non-tidal sandy beach gradient: an annual study from the Baltic Sea. Oceanologia 45 (4), 705-720.
  • [71] Van der Wal, D., Wielemaker-van den Dool, A., Herman, P. M. J., 2010. Spatial synchrony in intertidal benthic algal biomass in temperate coastal and estuarine ecosystems. Ecosystems 13, 338-351. https://doi.org/10.1007/s10021-010-9322-9.
  • [72] Vilbaste, S., Sundbäck, K., Nilsson, C., Truu, A. J., 2000. Distribution of benthic diatoms in the littoral zone of the Gulf of Riga, the Baltic Sea. Eur. J. Phycol. 354, 373-385. https://doi.org/10.1080/09670260010001735981.
  • [73] Virta, L., Gammal, J., Järnström, M., Bernard, G., Soininen, J., Norkko, J., Norkko, A., 2019. The diversity of benthic diatoms affects ecosystem productivity in heterogeneous coastal environments. Ecology 100, e02765. https://doi.org/10.1002/ecy.2765.
  • [74] Walve, J., Larsson, U., 2010. Seasonal changes in Baltic Sea seston stoichiometry: the influence of diazotrophic cyanobacteria. Mar. Ecol. Prog. Ser. 407, 13-25. https://doi.org/10.3354/meps08551.
  • [75] Wasmund, N., 1986. Ecology and bioproduction in the microphytobenthos of the chain of shallow inlets (Boddens) south of the Darss-Zingst Peninsula (Southern Baltic Sea). Int. Rev. ges. Hydrobiol. 71, 153-178. https://doi.org/10.1002/iroh.19860710202.
  • [76] Webb, W. L., Newton, M., Starr, D., 1974. Carbon dioxide exchange of Alnus rubra — A mathematical model. Oecologia 17, 281-291. https://doi.org/10.1007/BF00345747.
  • [77] Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377-392. https://doi.org/10.1086/622910.
  • [78] Woelfel, J., Schumann, R., Adler, S., Hübener, T., Karsten, U., 2007.Diatoms inhabiting a wind flat of the Baltic Sea: Species diversity and seasonal succession. Estuar. Coast. Shelf Sci. 75, 296-307. https://doi.org/10.1016/j.ecss.2007.04.033.
  • [79] Woelfel, J., Schumann, R., Peine, F., Flohr, A., Kruss, A., Tegowski, J., Blondel, P., 2010. Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): Biomass and potential primary production along the shore line. Polar Biol. 33, 1239-1253. https://doi.org/10.1007/s00300-010-0813-0.
  • [80] Woelfel, J., Schoknecht, A., Schaub, I., Enke, N., Schuhmann, R., Karsten, U., 2014a. Growth and photosynthesis characteristics of three benthic diatoms from the brackish southern Baltic Sea in relation to varying environmental conditions. Phycologia 53, 639-651. https://doi.org/10.2216/14-019.1.
  • [81] Woelfel, J., Eggert, A., Karsten, U., 2014b. Marginal impacts of rising temperature on Arctic benthic microalgae production based on in situ measurements and modelled estimates. Mar. Ecol. Prog. Ser. 501, 25-40. https://doi.org/10.3354/meps10688.
  • [82] Wulff, A., Sundbäck, K., Nilsson, C., Carlson, L., Jönsson, B., Sundback, K., Jonsson, B., 1997. Effect of sediment load on the microbenthic community of a shallow-water sandy sediment. Estuaries 20, 547-558. https://doi.org/10.2307/1352613.
  • [83] Yap, H. T., 1991. Benthic energy dynamics in a southern Baltic ecosystem. Mar. Biol. 108, 477-484. https://doi.org/10.1007/BF01313658.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a7de90a-26a1-466f-b5b1-d384800c64d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.