Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Target manoeuvre is one of the key factors affecting guidance accuracy. To intercept highly maneuverable targets, a second-order sliding-mode guidance law, which is based on the super-twisting algorithm, is designed without depending on any information about the target motion. In the designed guidance system, the target estimator plays an essential role. Besides the existing higher-order sliding-mode observer (HOSMO), a first-order linear observer (FOLO) is also proposed to estimate the target manoeuvre, and this is the major contribution of this paper. The closed-loop guidance system can be guaranteed to be uniformly ultimately bounded (UUB) in the presence of the FOLO. The comparative simulations are carried out to investigate the overall performance resulting from these two categories of observers. The results show that the guidance law with the proposed linear observer can achieve better comprehensive criteria for the amplitude of normalised acceleration and elevator deflection requirements. The reasons for the different levels of performance of these two observer-based methods are thoroughly investigated.
Rocznik
Tom
Strony
233--245
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
- AVIC LEIHUA Electronic Technology Research Institute, Wuxi 214063, China
autor
- College of Computer and Control Engineering, Nankai University,Tianjin 300350, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
autor
- Department of Mechanical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
autor
- College of Computer and Control Engineering, Nankai University,Tianjin 300350, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
Bibliografia
- [1] P. Zarchan, Tactical and Strategic Missile Guidance, American Institute of Aeronautics and Astronautics Inc, Virginia, 1997.
- [2] F. Imado and S. Miwa, “Missile guidance algorithm against high-g barrel roll maneuvers”, J. of Guidance, Control, and Dynamics 17 (1), 123-128 (1994).
- [3] N. Cho and Y. Kim, “Optimality of augmented ideal proportional navigation for maneuvering target interception”, IEEE Trans. on Aerospace Electronic Systems 52 (2), 948-954 (2016).
- [4] H. Cho, C.K. Ryoo, and M.J. Tahk, “Closed-form optimal guidance law for missiles of time-varying velocity”, J. of Guidance, Control, and Dynamics 19 (5), 1017-1022 (1996).
- [5] R. Gitizadeh, I. Yaesh, and J.Z. Ben-Asher, “Discrete-time optimal guidance”, J. of Guidance, Control, and Dynamics 22 (1), 171-174 (1999).
- [6] C.D. Yang and H.Y. Chen, “Three-dimensional nonlinear H∞ guidance law”, International J. of Robust and Nonlinear Control 11 (2), 109-129 (2001).
- [7] S. Kamal, J.A. Moreno, A. Chalanga, B. Bandyopadhyay, and L.M. Fridman, “Continuous terminal sliding-mode controller”, Automatica 69, 308-314 (2016).
- [8] W.H. Wang, S.F. Xiong, X.D. Liu, S. Wang, and L.J. Ma, “Adaptive nonsingular terminal sliding mode guidance law against maneuvering targets with impact angle constraint”, Proc.of IMechE, Part G: J Aerospace Engineering 229 (5), 867-890 (2015).
- [9] A. Levant, “Sliding order and sliding accuracy in sliding mode control”, International J. of Control 58 (6), 1247-1263 (1993).
- [10] G. Bartolini, A. Ferrara, and E. Usani, “Chattering avoidance by second-order sliding mode control”, IEEE Trans. on Automatic Control 43 (2), 241-246 (1998).
- [11] A. Levant, “Higher-order sliding modes, differentiation and output- feedback control”, International J. of Control 76 (9-10), 924-941 (2003).
- [12] A. Levant, “Robust exact differentiation via sliding mode technique”, Automatica 34 (3), 379-384 (1998).
- [13] Y.B. Shtessel, I.A. Shkolnikov, and A. Levant, “Smooth second- order sliding modes: Missile guidance application”, Automatica 43 (8), 1470-1476 (2007).
- [14] Y.B. Shtessel, I.A. Shkolnikov, and A. Levant, “Guidance and control of missile interceptor using second-order sliding modes”, IEEE Trans. on Aerospace Electronic Systems 45 (1), 110-124 (2009).
- [15] J.Q. Han, “From PID to active disturbance rejection control”, IEEE Trans. on Industrial Electronics 56 (3), 900-906 (2009).
- [16] Z.Q. Gao, “Scaling and bandwidth-parameterization based controller tuning”, American Control Conf., 4989-4996, (2003).
- [17] Q.X. Wu, M.W. Sun, Z.H. Wang, and Z.Q. Chen, “Practical solution to efficient flight path control for hypersonic vehicle”, Trans. of the Japan Society for Aeronautical and Space Sciences 59 (4), 195-204 (2016).
- [18] M. Przybyla, M. Kordasz, R. Madonski, P. Herman, and P. Sauer,. “Active disturbance rejection control of a 2DOF manipulator with significant modeling uncertainty”, Bull. Pol. Ac:. Tech. 60 (3), 509-520 (2012).
- [19] M.W. Sun, Z.H. Wang, and Z.Q. Chen, “Practical solution to attitude control within wide envelope”, Aircraft Engineering Aerospace Technology 86 (2), 117-128 (2014).
- [20] S.E. Talole, A.A. Godbole, and J.P. Kolhe, “Robust roll autopilot design for tactical missiles”, J. of Guidance, Control, and Dynamics 34 (1), 107-117 (2011).
- [21] D.M. Qiu, M.W. Sun, Z.H. Wang, Y.K. Wang, and Z.Q. Cheng, “Practical wind disturbance rejection for large deep space observatory antenna”, IEEE Trans. on Control System Technology 22 (5), 1983-1990 (2014).
- [22] A. Aguilera-González, C.M. Astorga-Zaragoza, M. Adam-Medina, D. Theilliol, J. Reyes-Reyes, C.-D. Garcia-Beltran, “Singular linear parameter-varying observer for composition estimation in a binary distillation column”, IET Control Theory and Applications 7 (3), 411-422 (2013).
- [23] A. Mokhtari, N.K. M’Sirdi, K. Meghriche, and A. Belaidi, “Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle”, Advanced Robotics 20 (1), 71-79 (2006).
- [24] A. Bacciotti and L. Roiser, Lyapunov Functions and Stability in Control Theory, Springer-Verlag, New York, 2011.
- [25] I.A. Shkolnikov, Y.B. Shtessel, and D. Lianos, “Integrated guidance-control system of a homing interceptor: sliding mode approach”, AIAA Guidance, Navigation, and Control conf. and Exhibit, 1-11 (2001).
- [26] M.T. Angulo, J.A. Moreno, and L. Fridman, “Robust exact uniformly convergent arbitrary order differentiator”, Automatica, 49 (8), 2489-2495 (2013).
- [27] J.I. Lee, I.S. Jeon, and M.J. Tahk, “Guidance law to control impact time and angle”, IEEE Trans. on Aerospace Electronic Systems 43 (1), 301-310 (2007).
- [28] M.W. Sun, Q. Xu, S.Z. Du, Z.Q. Chen, and D.X. Zhang, “Practical solution to impact angle control in vertical plane”, J. of Guidance, Control, and Dynamics 37 (3), 1022-1027 (2014).
- [29] H.K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 1996.
- [30] C.P. Mracek and D.B. Ridgely, “Missile longitudinal autopilots: comparison of multiple three loop topologies”, AIAA Guidance, Navigation, and Control conf. and Exhibit, 917-928 (2005).
- [31] A. Levant, “Non-homogeneous finite-time-convergent differentiator”, IEEE Conf. on Decision and Control and Chinese Control Conf., 8399-8404 (2009).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a79bc0a-66fa-461b-a0d3-4d9a8d32f49d