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Abstract: The minimum energy control problem for the positive continuous-time linear 
systems with bounded inputs is formulated and solved. Sufficient conditions for the 
existence of solution to the problem are established. A procedure for solving of the 
problem is proposed and illustrated by a numerical example. 
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1. Introduction 
 
 A dynamical system is called positive if its trajectory starting from any nonnegative initial 
state remains forever in the positive orthant for all nonnegative inputs. An overview of state of 
the art in positive system theory is given in the monographs [4, 7]. Variety of models having 
positive behavior can be found in engineering, economics, social sciences, biology and medi-
cine, etc.  
 The positive fractional linear systems have been investigated in [6, 9, 10, 17]. Stability of 
fractional linear 1D discrete-time and continuous-time systems has been investigated in the 
papers [1, 3, 17] and of 2D fractional positive linear systems in [5]. The notion of practical 
stability of positive fractional discrete-time linear systems has been introduced in [11]. The 
minimum energy control problem for standard linear systems has been formulated and solved 
by J. Klamka [19-24] and for 2D linear systems with variable coefficients in [18]. The control-
lability and minimum energy control problem of fractional discrete-time linear systems has 
been investigated by Klamka in [22, 23]. The minimum energy control of fractional positive 
continuous-time linear systems has been addressed in [14] and for descriptor positive discrete-
time linear systems in [16]. 
 In this paper the minimum energy control problem for positive continuous-time linear 
systems with bounded inputs will be formulated and solved.  
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 The paper is organized as follows. In Section 2 the basic definitions and theorems of the 
positive continuous-time linear systems are recalled and the necessary and sufficient con-
ditions for the reachability of the positive systems are given. The minimum energy control 
problem of the positive linear systems with bounded inputs is formulated and solved in 
Section 3. Sufficient conditions for the existence of solution of the problem are established 
and a procedure for computation of the optimal inputs and the minimum value of the 
performance index are also presented. Concluding remarks are given in Section 4. 
 The following notation will be used: ℜ  – the set of real numbers, mn×ℜ  – the set of mn ×  
real matrices, mn×

+ℜ  – the set of mn×  matrices with nonnegative entries and 1×
++ ℜ=ℜ nn , nM  

– the set of nn×  Metzler matrices (real matrices with nonnegative off-diagonal entries), nI  – 
the nn×  identity matrix.  
 
 
 
 

2. Reachability of positive continuous-time linear systems 
 
 Consider the continuous-time linear system 

  ),()()( tButAxtx +=&   (2.1) 

where ntx ℜ∈)(  and mtu ℜ∈)(  are the state and input vectors and ,nnA ×ℜ∈  mnB ×ℜ∈ . 
 The solution of equation (2.1) has the form 

  .)0(,)()(
0

0
)(

0 ∫ =+= −
t

tAAt xxdBuexetx τττ  (2.2) 

 Definition 2.1. [7] The system (2.1) is called the internally positive if and only if 
,)( ntx +ℜ∈  0≥t  for any initial conditions nx +ℜ∈0  and all inputs ,)( mtu +ℜ∈  .0≥t  

 Theorem 2.1. [7] The system (2.1) is internally positive if and only if 

  ,, mn
n BMA ×

+ℜ∈∈   (2.3) 

where nM  is the set of nn×  Metzler matrices. 
 Definition 2.2. The positive system (2.1) (or the positive pair (A,B)) is called reachable in 
time ],0[ ftt∈  if for any given final state n

fx +ℜ∈  there exists an input ,)( mtu +ℜ∈  for 
],0[ ftt∈  that steers the state of the system from zero initial state 0)0( =x  to the state xf, i.e. 

.)( ff xtx =  
 A real square matrix is called monomial if each its row and each its column contains only 
one positive entry and the remaining entries are zero. 
 Theorem 2.2. The positive system (2.1) is reachable in time ],0[ ftt ∈  if and only if the 
matrix nMA∈  is diagonal and the matrix nnB ×

+ℜ∈  is monomial. 
 Proof is similar to the proof given in [14]. 
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3. Minimum energy control problem for positive systems 
with bounded inputs 

3.1. Problem formulation 
 Consider the positive system (2.1) with nMA∈  and nnB ×

+ℜ∈  monomial. If the system is 
reachable in time ,],0[ ftt ∈  then usually there exists many different inputs ntu +ℜ∈)(  that 
steers the state of the system from 00 =x  to n

fx +ℜ∈ . Among these inputs we are looking for 
an input ntu +ℜ∈)(  satisfying the condition  

  nUtu +ℜ∈<)(  for ],0[ ftt∈ ,  (3.1) 

that minimizes the performance index 

  ,)()()(
0
∫=
ft

T dQuuuI τττ   (3.2) 

where nnQ ×
+ℜ∈  is a symmetric positive defined matrix and nnQ ×

+
− ℜ∈1 .  

 The minimum energy control problem for the positive continuous-time linear systems (2.1) 
with bounded inputs can be stated as follows: Given the matrices ,nMA∈  ,nnB ×

+ℜ∈  
nU +ℜ∈  and nnQ ×

+ℜ∈  of the performance index (3.2), n
fx +ℜ∈  and ,0>ft  find an input 

ntu +ℜ∈)(  for ],0[ ftt∈  satisfying (3.1) that steers the state vector of the system from 00 =x  
to n

fx +ℜ∈  and minimizes the performance index (3.2). 
 
3.2. Problem solution 
 To solve the problem we define the matrix 

  .),(
0

)(1)(∫ −−−==
f

f
T

f

t
tATtA

f deBBQeQtWW τττ   (3.3) 

 From (3.3) and Theorem 2.2 it follows that the matrix (3.3) is monomial if and only if the 
fractional positive system (2.1) is reachable in time .],0[ ft  In this case we may define the 
input 

  f
ttAT xWeBQtu f

T 1)(1)(ˆ −−−=  for .],0[ ftt∈   (3.4) 

 Note that the input (3.4) satisfies the condition ntu +ℜ∈)(  for ],0[ ftt∈  if 

  nnQ ×
+

− ℜ∈1  and n
fxW +

− ℜ∈1 .  (3.5) 

 Theorem 3.1. Let the positive system (2.1) be reachable in time ],0[ ft  and let ntu +ℜ∈)(  
for ],0[ ftt∈  be an input that steers the state of the positive system (2.1) from 00 =x  to 

n
fx +ℜ∈  and satisfies the condition (3.1). Then the input (3.4) also steers the state of the 

system from 00 =x  to n
fx +ℜ∈  and minimizes the performance index (3.2), i.e. .)()ˆ( uIuI ≤  
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 The minimal value of the performance index (3.2) is equal to 

  .)ˆ( 1
f

T
f xWxuI −=   (3.6) 

 Proof. If the conditions (3.5) are met then the input (3.4) is well defined and ntu +ℜ∈)(ˆ  for 
],0[ ftt∈ . We shall show that the input steers the state of the system from 00 =x  to n

fx +ℜ∈ . 
Substitution of (3.4) into (2.2) for ftt =  and 00 =x  yields 

  ff

t
tATtA

t
tA

f xxWdeBBQeduBetx
f

f
T

f

f

f === −−−−− ∫∫ 1

0

)(1)(

0

)( )(ˆ)( τττ τττ  (3.7) 

since (3.3) holds. By assumption the inputs )(tu  and ,)(ˆ tu  ],0[ ftt∈  steers the state of the 
system from 00 =x  to .n

fx +ℜ∈  Hence 

  ∫∫ −− ==
f

f

f

f

t
tA

t
tA

f duBeduBex
0

)(

0

)( )(ˆ)( ττττ ττ   (3.8a) 

or 

  .0)](ˆ)([
0

)( =−∫ −
f

f

t
tA duuBe ττττ   (3.8b) 

 By transposition of (3.8b) and postmultiplication by fxW 1−  we obtain 

  .0)](ˆ)([
0

1)( =−∫ −−
f

f
T

t

f
tATT xWdeBuu τττ τ   (3.9) 

 Substitution of (3.4) into (3.9) yields 

  .0)(ˆ)](ˆ)([)](ˆ)([
00

1)( =−=− ∫∫ −−
ff

f
T

t
T

t

f
tATT duQuuxWdeBuu τττττττ τ   (3.10) 

 Using (3.10) it is easy to verify that 

  .)](ˆ)([)](ˆ)([)(ˆ)(ˆ)()(
000
∫∫∫ −−+=
fff t

T
t

T
t

T duuQuuduQuduQu τττττττττττ   (3.11) 

 From (3.11) it follows that )()ˆ( uIuI <  since the second term in the right-hand side of the 
inequality is nonnegative.  
 To find the minimal value of the performance index (3.2) we substitute (3.4) into (3.2) and 
we obtain 

  f
T
ff

t
tATtAT

f

t
T xWxxWdeBBQeWxduQuuI

f

f
T

f

f

11

0

)(1)(1

0

)(ˆ)(ˆ)ˆ( −−−−−− === ∫∫ ττττ ττ   (3.12) 
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since (3.3) holds.  
 From (3.4) we have 

  ,)(ˆ )( FeEA
dt

tud ttAT f
T −−=   (3.13a) 

where 

  ., 11
f

T xWFBQE −− ==    (3.13b) 

 Using (3.13) we may find ],0[ ftt∈  for which ntu +ℜ∈)(ˆ  reaches its maximal value. Note 
that if all eigenvalues of the matrix A have positive real parts then )(ˆ tu  reaches its maximal 
value for t = 0 and if they have negative real parts then for t = tf. 
 From the above considerations we have the following procedure for computation the 
optimal inputs satisfying the condition (3.1) that steers the state of the system from 00 =x  to 

n
fx +ℜ∈  and minimize the performance index (3.2). 

 
 Procedure 3.1. 
Step 1. Knowing nMA∈  compute .Ate  
Step 2. Using (3.3) compute the matrix W knowing the matrices A, B, Q for some tf. 
Step 3. Using (3.4) and (3.13) compute the input (3.4) and tf satisfying the condition (3.1) for 
given nU +ℜ∈  and .n

fx +ℜ∈  
Step 4. Using (3.6) compute the minimal value of the performance index. 
Example 3.1. Consider the positive system (2.1) with matrices 

  2,1,0,0,
0

0
,

0
0

2

1

2

1 =>>⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡= kba

b
b

B
a

a
A kk   (3.14) 

and the performance index (3.2) with  

  .2,1,0,
0

0
2

1 =>⎥⎦
⎤

⎢⎣
⎡= kq

q
q

Q k   (3.15) 

 Compute the bounded input )(ˆ tu  satisfying  

  ⎥⎦
⎤

⎢⎣
⎡<⎥⎦

⎤
⎢⎣
⎡=

2

1

2

1

)(ˆ
)(ˆ

)(ˆ
U
U

tu
tu

tu  for ],0[ ftt∈   

that steers the state of the system from zero state to  

  2
21 ][ +ℜ∈= T

fff xxx   

(T denote the transpose) and minimize the performance index.  
 Using the procedure 3.1 we obtain the following: 
Step 1. In this case we have  
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  ⎥
⎦

⎤
⎢
⎣

⎡
= ta

ta
tA

e
ee

2

1

0
0 .  (3.16) 

Step 2. Using (3.14), (3.15) and (3.16) we obtain 

 

.
)1(

2
0

0)1(
2

0
0

2

1

2

1

2

2

1
1

2
2

2

1

1
2

2
1

0
21

1
2
2

21
2

2
1

0

1

0

)(1)(

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎦

⎤
⎢
⎣

⎡
===

−

−

−

−
−−−− ∫∫∫

f

f

ff
T

f

f
T

f

ta

ta

t

a

at
ATA

t
tATtA

e
a
qb

e
a
qb

d
eqb

eqbdeBBQedeBBQeW τττ τ

τ
ττττ

(3.17) 

Step 3. Using (3.4), (3.14), (3.15) and (3.17) we obtain 

  

.
)1(2

)1(2

)1(
2

0

0)1(
2

0
0

0
0

0
0

)(ˆ

1
12)(

1

1

2
12)(

2

2

2

1

1

2

2

1
1

2
2

2

1

1
2

2
1

)(

)(

2

1
1

2

1
1

1)(1
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2

1

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥⎦
⎤

⎢⎣
⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

=

−−

−−

−

−

−

−

−

−

−

−−−

f
tatta

f
tatta

f

f

ta

ta

tta

ttaT

f
ttAT

xee
b
a

xee
b
a

x
x

e
a
qb

e
a
qb

e
e

b
b

q
q

xWeBQtu

ff

ff

f

f

f

f

f
T

  (3.18) 

 The minimal value of tf satisfying the condition (3.1) can be found from the inequality 

  ⎥⎦
⎤

⎢⎣
⎡<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

−−

2

1

1
12)(

1

1

2
12)(

2

2

)1(2

)1(2

11

22

U
U

xee
b
a

xee
b
a

f
tatta

f
tatta

ff

ff

 for .],0[ ftt ∈  (3.19) 

 From (3.19) we have 

  .01
2

,01
2 1122

21

112

12

222 >−−>−− ffff taftatafta e
Ub
xa

ee
Ub
xa

e   (3.20) 

 Solving the inequalities (3.20) with respect to tf we obtain 

  ,1ln1,1ln1 2

21

11

21

11

1

2

12

22

12

22

2 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+>

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+>

Ub
xa

Ub
xa

a
t

Ub
xa

Ub
xa

a
t ff

f
ff

f      (3.21a) 

 and  
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  .1ln1,1ln1max
2

21

11

21

11

1

2

12

22

12

22

2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+=

Ub
xa

Ub
xa

aUb
xa

Ub
xa

a
t ffff

f  (3.21b) 

 For example for 1,1,3,2 212121 ====== UUbbaa  and T
fx ]11[=  from (3.18) we 

obtain )(ˆ1 tu  and )(ˆ2 tu  for ]1,0[∈t  shown on Figure 3.1. 
 

Fig. 3.1. Values of optimal input at time ]1,0[∈t

 

 
 
 Note that )(ˆ1 tu  and )(ˆ2 tu  reaches their maximum values for t = 0 since the eigenvalues a1, 
a2 of A are positive. 
 From (3.21) for the same data we obtain  

  

7218.0]52ln[
2
11ln1

,6061.0]103ln[
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11ln1
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⎥
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⎢
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⎥
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⎤

⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+

Ub
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Ub
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a

Ub
xa

Ub
xa

a

ff

ff

  (3.22a) 

and 

  { } .7218.07218.0,6061.0max ==ft   (3.22b) 

Step 4. The minimal value of the performance index (3.6) is equal to 

  

.)1(2)1(2

)1(
2

0

0)1(
2][)ˆ(

2
2

12
2
2

122
1

12
2
1

21

2

1

1

2

2

1
1

2
2

2

1

1
2

2
1

21
1

21

2

1

f
ta

f
ta

f

f

ta

ta

fff
T
f

xe
b

qaxe
b
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x
x

e
a
qb

e
a
qb

xxxWxuI
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f

f

−−

−

−

−

−

−+−=

⎥⎦
⎤

⎢⎣
⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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−

−
==

  (3.23) 
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4. Concluding remarks 
 
 Necessary and sufficient conditions for the reachability of the positive continuous-time 
linear systems have been established (Theorem 2.2). The minimum energy control problem for 
the positive continuous-time linear systems with bounded inputs has been formulated and 
solved. Sufficient conditions for the existence of a solution to the problem has been given 
(Theorem 3.1) and a procedure for computation of optimal input satisfying the condition (3.1) 
and the minimal value of performance index has been proposed. The effectiveness of the 
procedure has been demonstrated on the numerical example. The presented method can be 
extended to positive discrete-time linear systems and to fractional positive continuous-time 
and discrete-time linear systems with bounded inputs. 
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