PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of Cooling Rates and Intermediate Slab Blank Thickness on the Microstructure and Mechanical Properties of the X70 Pipeline Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the microstructures and mechanical properties of X70 pipeline steels produced with varying Mo contents, accelerated cooling rate and intermediate slab blank thickness are systematically investigated. Results showed that the microstructures and mechanical properties of the X70 pipeline steels were strongly affected by Mo addition. The pearlite and proeutectoid ferrite formation is obviously inhibited in containing-Mo steel and the acicular ferrite (AF) is obtained in a wide range of cooling rates. With the increasing the cooling rates, the AF constituent amount increases. The grains can be refined by increasing the thickness of intermediate slab for enhancing the cumulative reduction rates, and meanwhile increase the number density of precipitates. It was proved by simulation and industrial trials that the low-alloy X70 pipeline steels can be produced increasing cooling rates and the thickness of intermediate slab without strength and toughness degradation which also reduce alloy cost.
Twórcy
autor
  • School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, P.R. China
  • Angang Steel Company Limited, Anshan, 114009, P.R. China
autor
  • Angang Steel Company Limited, Anshan, 114009, P.R. China
autor
  • Angang Steel Company Limited, Anshan, 114009, P.R. China
autor
  • Angang Steel Company Limited, Anshan, 114009, P.R. China
autor
  • School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, P.R. China
Bibliografia
  • [1] C.U. Jeong, W. Woo, J.Y. Choi, S.H. Choi, Effect of kinematic stability of initial orientation on deformation heterogeneity and ductile failure in duplex stainless steel during uniaxial tension, Acta. Mater. 67, 21-31 (2014). DOI: https://doi.org/10.1016/j.actamat-2013-020
  • [2] F. Zanotto, V. Grassi, A. Balbo, C. Monticelli, F. Zucchi, Stress corrosion cracking of LDX 2101 duplex stainless steel in chloride solutions in the presence of thiosulphate, Corros. Sci. 80, 205-212 (2014). DOI: https://doi.org/10.1016/j.corsci-2013-028
  • [3] J. Xiong, M.Y. Tan, M. Forsyth, The corrosion behaviors of stainless steel weldments in sodium chloride solution observed using a novel electrochemical measurement approach, Desalination 327, 39-45 (2013). DOI: https://doi.org/10.1016/j.desal-2013-08-006
  • [4] S. Spigarelli, M.E. Mehtedi, P. Ricci, C. Mapelli, Constitutive equations for prediction of the flow behaviour of duplex stainless steels, Mater. Sci. Eng. A. 527 (16-17), 4218-4228 (2010). DOI: https://doi.org/10.1016/j.msea-2010-03-029
  • [5] M.L. Angelescu, E.M. Cojocaru, N. Serban, V.D. Cojocaru, Evaluation of Hot Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy, Metals 10 (5), 10050673 (2020). DOI: https://doi.org/10.3390/met-10050673
  • [6] J.O. Nilsson, Super Duplex Stainless Steels, Mater. Sci. Technol. 8, 685-700 (1992). DOI: https://doi.org/10.1179/mst-1992-8-8-685
  • [7] A. Iza-Mendia, A. Piñol-Juez, J.J. Urcola, I. Gutierrez, Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions, Metall. Mater. Trans. A. 29, 2975-2986 (1998). DOI: https://doi.org/10.1007/s11661-998-0205-z
  • [8] D.N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, G.J. Qiao, Deformation characteristic and prediction of flow stress for as-cast 21Cr economical duplex stainless steel under hot compression, Mater. Des. 51, 975-982 (2013). DOI: https://doi.org/10.1016/j.matdes-2013-04-065
  • [9] J.H. Kang, S.J. Heo, J. Yoo, Y.C. Kwon, Hot working characteristics of S32760 super duplex stainless steel, J. Mech. Sci. Technol. 33, 2633-2640 (2019). DOI: https://doi.org/10.1007/s12206-019-0511-y
  • [10] Y. Fang, Z. Liu, G. Wang, Crack Properties of Lean Duplex Stainless Steel 2101 in Hot Forming Processes, J. Iron. Steel. Res. Int. 18, 58-62 (2011). DOI: https://doi.org/10.1016/S1006-706X(11)60051-4
  • [11] Y.L. Fang, Z.Y. Liu, H.M. Song, L.Z. Jiang, Hot deformation behavior of a new austenite-ferrite duplex stainless steel containing high content of nitrogen, Mater. Sci. Eng. A, 526 (1-2), 128-133 (2009). DOI: https://doi.org/10.1016/j.msea.2009-07-012
  • [12] S. Wronski, J. Tarasiuk, B. Bacroix, A. Baczmanski, C. Braham, Investigation of plastic deformation heterogeneities in duplex steel by EBSD, Mater. Charact. 73, 52-60 (2012). DOI: https://doi.org/10.1016/j.matchar.2012-07-016
  • [13] R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski, E.C. Oliver, Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel, Acta Mater. 54 (19), 5027-5039 (2006). DOI: https://doi.org/10.1016/j.actamat.2006-06-035
  • [14] Y. Han, D.N. Zou, Z.Y. Chen, G.W. Fan, W. Zhang, Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium-high strain rates, Mater. Charact. 62 (2), 198-203 (2011). DOI: https://doi.org/10.1016/j.matchar.2010-11-013
  • [15] M. Faccoli, R. Roberti, Study of hot deformation behaviour of 2205 duplex stainless steel through hot tension tests, J. Mater. Sci. 48, 5196-5203 (2013). DOI: https://doi.org/10.1007/s10853-013-7307-8
  • [16] O. Balancin, W.A.M. Hoffmann, J.J. Jonas, Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures, Metall. Mater. Trans. A, 31, 1353-1364 (2000). DOI: https://doi.org/10.1007/s11661-000-0254-4
  • [17] N. Haghdadi, P. Cizek, H. Beladi, P.D. Hodgsn, A novel high-strain-rate ferrite dynamic softening mechanism facilitated by the interphase in the austenite/ferrite microstructure, Acta. Mater. 126, 44-57 (2017). DOI: https://doi.org/10.1016/j.actamat.2016-12-045
  • [18] Y.Y. Liu, H.T. Yan, X.H. Wang, M. Yan, Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101, Mater. Sci. Eng. A. 575, 41-47 (2013). DOI: https://doi.org/10.1016/j.msea.2013-03-036
  • [19] G.W. Fan, J. Liu, P.D. Han, G.J. Qiao, Hot ductility and microstructure in casted 2205 duplex stainless steels, Mater. Sci. Eng. A. 515 (1-2), 108-112 (2009). DOI: https://doi.org/10.1016/j.msea.2009-02-022
  • [20] G. Fargas, M. Anglada, A. Mateo, Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel, J. Mater. Process. Technol. 209 (4), 1770-1782 (2009). DOI: https://doi.org/10.1016/j.jmatprotec.2008-04-026
  • [21] K.W. Wong, C.H. Shek, W. Zhang, J.K.L. Lai, σ phase dissolution in duplex stainless steel at elevated temperature studied by thermal analysis, Mater. Lett. 62 (24), 3991-3994 (2008). DOI: https://doi.org/10.1016/j.matlet.2008-05-040
  • [22] M. Ma, H. Ding, Z. Tang, J. Zhao, Z. Jiang, G. Li, Effect of strain rate and temperature on hot workability and flow behaviour of duplex stainless steel, ironmaking. Steelmaking. 43 (2), 88-96 (2016). DOI: https://doi.org/10.1179/1743281215y.0000000053
  • [23] Y. Zhao, W.N. Zhang, Z.Y. Liu, G.D. Wang, Development of an easy-deformable Cr21 lean duplex stainless steel and the effect of heat treatment on its deformation mechanism, Mater. Sci. Eng. A. 702, 279-288 (2017). DOI: https://doi.org/10.1016/j.msea.2017-07-020
  • [24] S. Kleber, M. Hafok, Multiaxial forging of Super Duplex Steel, Mater. Sci. Forum 638-642, 2998-3003 (2010). DOI: https://doi.org/10.4028/www.scientific.net/MSF.638-642.2998
  • [25] S. Kingklang, V. Uthaisangsuk, Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507, Metall. Mater. Trans. A, 48, 95-108 (2017). DOI: https://doi.org/10.1007/s11661-016-3829-4
  • [26] Y.H. Yang, B. Yan, The microstructure and flow behavior of 2205 duplex stainless steels during high temperature compression deformation, Mater. Sci. Eng. A, 579, 194-201 (2013). DOI: https://doi.org/10.1016/j.msea.2013-05-020
  • [27] L.Ch. Yang, Y.T. Pan, I.G. Chen, D.Y. Lin, Constitutive Relationship Modeling and characterization of flow behavior under hot working for Fe-Cr-Ni-W-Cu-Co Super-Austenitic Stainless Steel, Metals 5 (3), 1717 (2015). Doi: https://doi.org/10.3390/met5031717
  • [28] Z.H. Gao, Z.L. Tang, S.P. Xu, G.J. Cui, Offshore steel with extrathick A514GrQ Development, World Metals 013, 1-5 (2011). DOI: https://doi.org/10.28826/n.cnki.nwjsd.2011.001205
  • [29] J.M. Cabrera, A. Mateo, L. Lanes, J.M. Prado, M. Anglada, Modeling thermomechanical processing of austenite, J. Mater. Process. Technol. 143-144, 403-409 (2003). DOI: https://doi.org/10.1016/ S0924-0136(03)00441-2
  • [30] Z.H. Feng, J.Y. Li, Y.D. Wang, The Microstructure Evolution of Lean Duplex Stainless Steel 2101, Steel. Res. Int. 88 (12), 1700177 (2017). DOI: https://doi.org/10.1002/srin.201700177
  • [31] H.J. Mcqueen, A.S. Yue, N.D. Ryan, E. Fry, Hot working characteristics of steels in austenitic state, J. Mater. Process. Technol. 53 (1-2), 293-310 (1995). DOI: https://doi.org/10.1016/0924-0136(95)01987-P
  • [32] H. Mirzadeh, A. Najafizadeh, Hot Deformation and Dynamic Recrystallization of 17-4 PH Stainless Steel, ISIJ Int. 53 (4), 680-689 (2013). DOI: https://doi.org/10.2355/isijinternational.53.680
  • [33] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Mater. Trans. A. 15, 1883-1892 (1984). DOI: https://doi.org/10.1007/BF02664902
  • [34] I. Calliari, M. Breda, C. Gennari, L. Pezzato, M. Pellizzari, A. Zambon, Investigation on Solid-State Phase Transformations in a 2510 Duplex Stainless Steel Grade, Metals 10 (7), 967 (2020). DOI: https://doi.org/10.3390/met10070967
  • [35] N. Pettersson, R.F.A. Pettersson, S. Wessman, Precipitation of Chromium Nitrides in the Super Duplex Stainless Steel 2507, Metall. Mater. Trans. A. 46, 1062-1072 (2015). DOI: https://doi.org/10.1007/s11661-014-2718-y
  • [36] H.R.R. Ashtiani, M.H. Parsa, H. Bisadi, Constitutive equations for elevated temperature flow behavior of commercial purity aluminum, Mater. Sci. Eng. A. 545, 61-67 (2012) DOI: https://doi.org/10.1016/j.msea.2012-02-090
Uwagi
This research is supported by the China Postdoctoral Science Foundation funded project (2018M641699).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a6b9e6a-424a-408e-b68c-2e36172f6596
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.